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Abstract

A conformal classifier produces a set of predicted classes
and provides a probabilistic guarantee that the set includes
the true class. Unfortunately, it is often the case that confor-
mal classifiers produce uninformatively large sets. In this
work, we show that test-time augmentation (TTA)–a tech-
nique that introduces inductive biases during inference–
reduces the size of the sets produced by conformal classi-
fiers. Our approach is flexible, computationally efficient,
and effective. It can be combined with any conformal score,
requires no model retraining, and reduces prediction set
sizes by 10%-14% on average. We conduct an evaluation
of the approach spanning three datasets, three models, two
established conformal scoring methods, different guarantee
strengths, and several distribution shifts to show when and
why test-time augmentation is a useful addition to the con-
formal pipeline.

1. Introduction
Conformal prediction has emerged as a promising way to
equip existing classifiers with statistically valid uncertainty
estimates. It does so by replacing the prediction of the most
likely class with an uncertainty set–a set of classes accom-
panied by a probabilistic guarantee that the true class ap-
pears in the set [36].

Conformal prediction faces two limitations in practice.
First, achieving a suitably strong guarantee often leads
to prediction sets that are uninformatively large [10, 47].
Large prediction sets have been shown to decrease perfor-
mance when provided as a decision-making aid [3, 10, 47].

Second, conformal classifiers inherit the instability of
the underlying models. As a result, prediction sets can
change significantly in response to small input perturba-
tions, a well-known weakness of neural networks [39]. Ap-
plying a horizontal flip to each image in ImageNet, for ex-
ample, changes the prediction set sizes for 75% of examples
at a coverage guarantee of 99%. Such behavior also repre-
sents a barrier to broader use.

In this work, we show that test-time augmentation

(TTA), a widely-used technique in computer vision, has the
potential to address both limitations. TTA involves generat-
ing an ensemble of predictions by perturbing the input with
label-preserving transformations. It has previously been
shown that TTA can be used to make non-conformal clas-
sifiers more robust to small input perturbations [7], more
accurate [37], and better calibrated [18]. However, previous
work has not explored the utility of TTA in the context of
conformal prediction.

We propose test-time-augmented conformal prediction,
which transforms a classifier’s predictions using a learned
test-time augmentation policy prior to conformal classifica-
tion. By using distinct sets of labeled data to learn the test-
time augmentation policy and the conformal classifier, we
preserve the assumption of exchangeability, and thereby the
coverage guarantee associated with the conformal predictor.

In experiments testing the performance of conformal
predictors subject to distribution shift, we see that test-time
augmentation reduces prediction set sizes by 14% on av-
erage, with no loss of coverage. And even when there is
no distribution shift, we see a reduction of 10% on aver-
age. Moreover, we find that classes with the largest average
prediction set sizes benefit most from the introduction of
test-time augmentation. We also show that test-time aug-
mentation can bridge gaps between classifiers of different
sizes (e.g., we show that test-time augmentation combined
with ResNet-50 produces smaller set sizes than ResNet-101
without test-time augmentation).

Our analysis of why test-time augmentation reduces pre-
diction set sizes reveals a previously unknown effect of test-
time augmentation. Specifically, TTA increases the pre-
dicted probability of the true class even when it is predicted
to be unlikely (for example, promoting the true class from
200th most likely to 100th most likely). Although such be-
havior has no impact on the maximum predicted probability
— commonly the focus of literature on test-time augmenta-
tion [2, 32, 37] — it is valuable in conformal prediction.
This is because when the true class is promoted to a higher
rank among a classifier’s predicted probabilities, the confor-
mal classifier includes fewer incorrect classes to meet the
conformal guarantee.



Figure 1. We illustrate the addition of test-time augmentation to conformal calibration in green (left) and provide a snapshot of the
improvements it can confer (right). We show results on Imagenet, with a desired coverage of 95%, for the 20 classes with the largest
predicted set sizes on average (computed over 10 calibration/test splits).

Contributions We make three contributions. To begin,
this is the first work to propose combining test-time aug-
mentation, a popular technique in computer vision, with
conformal prediction. Second, we present a method that
reduces the prediction set sizes of existing conformal pre-
dictors by using automatically learned test-time augmenta-
tions. Finally, we demonstrate, in an extensive set of exper-
iments, that our approach to combining conformal predic-
tion and test-time augmentation leads to smaller prediction
sets.

2. Related work

Conformal prediction was first introduced by Gammerman
et al. [16], and further developed by Saunders and Holloway
[35] and Vladmir Vovk [42]. We review efforts to ensem-
ble conformal predictors and efforts to reduce prediction set
sizes below.

Ensembles in conformal prediction Several methods
that generate ensembles of conformal predictors are known
to improve efficiency. These methods include cross-
conformal prediction [43], bootstrap conformal prediction
[44], aggregated conformal prediction [5, 25], and out-of-
bag conformal prediction [26]. The approaches primarily
differ in how data is sampled to create the training dataset
for the classifier and the calibration dataset for the confor-
mal predictor. However, all require training multiple base
classifiers or conformal predictors. Our approach is dis-
tinct: we propose a technique to generate an ensemble from
a single model by perturbing the input, which requires no
additional base models and no additional conformal predic-
tors.

Efficiency in conformal prediction There are two ways
to improve efficiency in split conformal prediction: adjust-
ments to the conformal score or improvements to the un-
derlying classifier. Many works have proposed new proce-
dures to estimate and apply thresholds on conformal scores
[1, 4, 13, 33, 40]. Romano et al. [34] proposed APS, a con-
formal score based on the cumulative probability required
to include the correct class in a prediction set. Angelopou-
los et al. [1] built on this work to propose RAPS, which
modifies APS by penalizing the inclusion of low-probability
classes. Comparatively little work has focused on improve-
ments to the underlying model. Jensen et al. [20] ensemble
a set of base classifiers, where the classifiers are created by
training models on subsets of the training data. Stutz et al.
[38] provide a new way to train the base classifier and con-
formal predictor jointly through a novel conformal training
loss. In contrast, our work focuses on improving the under-
lying model without retraining, and can be easily combined
with any of the above procedures.

Test-Time Augmentation Test-time augmentation (TTA)
is a popular technique to improve the accuracy, robustness,
and calibration of an existing classifier by aggregating pre-
dictions over a set of input transformations [2, 9, 15, 18,
32, 37, 48]. TTA has been applied to a diverse range of
predictive tasks across domains ranging from healthcare
[8] to content moderation [27]. Consequently, many have
proposed new ways to perform TTA—for example, learn-
ing when to apply TTA [29], which augmentations to use
[6, 21, 28], and how to aggregate the resulting predictions
[6, 9, 37]. Existing work typically focuses on test-time aug-
mentation’s impact on highest predicted probability. Here,
we analyze how test-time augmentation increases the pre-



dicted probability assigned to the true class when it appears
outside the top few classes, and how that change is conse-
quential in conformal prediction.

3. Problem setting
We operate within the split conformal prediction frame-
work. In this setting, a conformal classifier C(xi) ⊂
{1, . . . ,K} maps input xi to a subset of K possible classes
and requires three inputs:
• Calibration set D(cal) = {(x1, y1), . . . , (xn, yn)}, con-

taining n labeled examples.
• Classifier f : X 7→ ∆K , mapping input domain X to a

probability distribution over K classes.
• Desired upper bound on error rate α ∈ [0, 1], where
(1− α) is the probability the set contains the true class.
We study the introduction of two variables drawn from

the test-time augmentation literature:
• Augmentation policy A = {a0, . . . , am−1}, consisting

of m augmentation functions, where a0 is the identity
transform.

• Aggregation function ĝ, which aggregates a set of pre-
dictions to produce one prediction.
Each variable translates to a key choice in test-time aug-

mentation: what augmentations to apply (A) and how to
aggregate the resulting probabilities (ĝ).

4. Approach
Our goal is to learn an aggregation function ĝ to maximize
the accuracy of the underlying classifier, and ultimately re-
duce the sizes of the prediction sets generated from the
classifier’s predicted probabilities. We briefly outline the
conformal approach, and then detail the mechanics of our
method (illustrated in Figure 1). For a detailed introduction
to conformal prediction, refer to Shafer and Vovk [36].

Conformal predictors accept three inputs: a probabilis-
tic classifier f , a calibration set D(cal), and a pre-specified
error rate α. Using the these inputs, one can construct a
conformal predictor in three steps:
1. Define a score function c(xi, yi), which produces a con-

formal score representing the uncertainty of the input ex-
ample and label pair.

2. Produce a distribution of conformal scores by computing
c(xi, yi) for all (xi, yi) ∈ D(cal).

3. Compute threshold q̂ as the ⌈(n+1)(1−α)⌉/n quantile
of the distribution of conformal scores over n examples
in the calibration set, combined with {∞}.
For a new example x, we compute c(xi, y) for all y ∈

{1, . . . ,K}, and include all y for which c(xi, y) < q̂. We
adopt the conformal score proposed by Romano et al. [34],
which equates to the cumulative probability required to in-
clude the correct class:

π̂x(y
′) = p̂(y = y′|x) = f(x)y′ (1)

ρx(y) =

K∑
y′=1

π̂x(y
′)I[π̂x(y

′) > π̂x(y)] (2)

c(x, y) = ρx(y) + u · π̂x(y) (3)

where ρx(y) is the cumulative probability of all classes
predicted with higher probability than y and π̂x(y

′) corre-
sponds to the predicted probability of class y′ given x. The
variable u ∼ U(0, 1). Conformal score c(xi, yi) is thus
composed of this cumulative probability and the predicted
probability of class yi.

Proposal Our approach differs from prior work in that the
conformal score is derived by transforming the probabili-
ties output by f using test-time augmentation. Concretely,
this replaces Equation 1 with the following, parametrized
by augmentation policy A and augmentation weights θ.

π̂x(y
′) = p̂(y = y′|xi) = g(xi; f,A, θ) (4)

Aggregation weights θ are applied to the logits output
by classifier f , and transformed to be proper probabilities
by applying a softmax function. We learn the aggregation
weights θ using a portion of the validation set, D(TTA),
distinct from calibration set used to identify the conformal
threshold (D(cal)). In contrast to traditional approaches,
where all labeled data is used to estimate the conformal
threshold, we instead reserve a portion to learn the test-time
augmentation policy.

We learn a set of weights which maximize classification
accuracy on D(TTA) by minimizing the cross-entropy loss1

computed between the predicted probabilities and true la-
bels. More formally, g applies θ and A as follows:

g(xi; f,A,Θ) = σ(θTA(f,A, xi)) (5)

where A uses f to map input xi to a M × K matrix of
predicted logits where M is the number of augmentations
and K is the number of classes. θ is a 1 × m vector cor-
responding to augmentation-specific weights. Each row in
A(f,A, xi) represents the pre-trained classifier’s predicted
logits on augmentation am of xi. TTA-Learned refers to
TTA combined with learned augmentation weights, while
TTA-Avg refers to a simple average over the augmentations.

1We found no significant improvement by using alternate losses consid-
ered in the conformal prediction literature (e.g. focal or conformal training
loss). See Table S7 in the Appendix.



We refer to the fraction of the validation set allotted to
D(TTA) as β. Figure S3 shows that performance is not sen-
sitive to the choice of β; as a result, all experiments use
β = .2 (see supplement for further discussion). This does
reduce the amount of data available to identify the appro-
priate threshold, but we find that the benefits TTA confers
outweigh the cost to threshold estimation. Computational
cost scales linearly with the size of A; each additional aug-
mentation translates to a forward pass of the base classifier.
One can use the learned weights to save computation by
identifying which test-time augmentations to generate.

Preserving exchangeability The validity of conformal
prediction depends upon the assumption of exchangeabil-
ity: that all orderings of examples are equally likely (in ef-
fect, meaning that the distribution of examples in the cali-
bration set is indistinguishable from the distribution of un-
seen examples). Prior work has shown that the conformal
procedure is valid under deterministic transformations [24];
by using distinct examples to learn the test-time augmenta-
tion policy, the proposed approach constitutes a determin-
istic transformation applied to both the calibration set and
unseen examples. If we were to instead use the same ex-
amples to learn the test-time augmentation policy and the
conformal threshold, exchangeability could be broken.

5. Experimental Set-Up
Datasets We show results on the test splits of three widely
used image classification datasets: ImageNet [12] (50,000
natural images spanning 1,000 classes), iNaturalist [41]
(100,000 images spanning 10,000 species), and CUB-Birds
[45] (5,794 images spanning 200 categories of birds). Im-
ages are distributed evenly over classes in ImageNet and
iNaturalist, while CUB-Birds has between 11 and 30 im-
ages per class.

Models The default model architecture, across all
datasets, is ResNet-50 [17]. The accuracies of the base
classifiers are 76.1% (ImageNet), 76.4% (iNaturalist), and
80.5% (CUB-Birds). To study the relationship between
model complexity and performance, we also provide results
using ResNet-101 and ResNet-152 on ImageNet. For Im-
ageNet, we make use of the pretrained models made avail-
able by PyTorch [31]. For iNaturalist, we use a model made
public by Niers, Tom [30]. For CUB-Birds, we train a net-
work by finetuning the final layer of a ResNet-50 model
initialized with ImageNet’s pretrained weights.

Augmentations We consider two augmentation policies.
The first (the simple augmentation policy) consists of a
random-crop and a horizontal-flip; to produce a random
crop, we pad the original image with 4 pixels and take a

256x256 crop of the expanded image (thereby preserving
the original image resolution). The simple augmentation
policy is widely used because its augmentations are likely
to be label-preserving. The second, which we refer to as
the expanded augmentation policy, consists of 12 augmen-
tations: increase-sharpness, decrease-sharpness, autocon-
trast, invert, blur, posterize, shear, translate, color-jitter, ran-
dom crop, horizontal-flip, and random-rotation. The sup-
plement contains a description of each augmentation. These
augmentations are not always label preserving, but, as we
show, can improve performance when weights are learned.

Baselines We benchmark results using two conformal
scores (translating to different definitions of c(x, y) in
Equation 4). The first score is APS [34] (described in Eqn.
4), which represents the cumulative probability required to
include the correct class, and the second is RAPS [1], which
modifies APS by adding a term to penalize large set sizes.
For all experiments, we do not allow sets of size 0. We
implement RAPS and APS using code provided by An-
gelopoulos et al. [1], and automatically select hyperparam-
eters kreg and λ to minimize set size. We also compare
against conformal prediction using a simple average over
the test-time augmentations (TTA-Avg). In the supplement,
we also compare against non-conformal Top-1 and Top-5
prediction sets.

Evaluation We evaluate results using the three metrics
commonly used in the conformal prediction literature: effi-
ciency, coverage, and adaptivity. We quantify efficiency us-
ing both average prediction set size (measured across all ex-
amples) and class-conditional prediction set size (measured
across all examples in a class). Coverage is the percentage
of sets containing the true label. We define adaptivity as
the size-stratified coverage violation (SSCV), introduced by
Angelopoulos et al. [1]. We first partition examples based
upon the size of the prediction set. We create bins for set
sizes of [0, 1], [2, 3], [4, 10], [11, 100], and [101, ]. We then
compute the empirical coverage within each bin, and com-
pute adaptivity as the maximum difference between theo-
retical coverage and empirical coverage across bins. The
closer this value is to 0, the better the adaptivity.

For each dataset, we report results across 10 randomly
generated splits into validation and test sets. For all experi-
ments (save for the validation set size experiment), the val-
idation set and test set are the same size. We allot 20% of
examples from the validation set to D(TTA) (used to learn
TTA policy), and allot the remaining examples to the cali-
bration set. For the experiment studying validation set size,
we downsample the validation set. We compute statistical
significance using a paired t-test, with a Bonferroni correc-
tion [46] for multiple hypothesis testing. Code to reproduce
all experiments will be made publicly available.



Expanded Augmentation Policy Simple Augmentation Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 RAPS 37.751 ± 2.334 61.437 ± 6.067 15.293 ± 2.071 37.751 ± 2.334 61.437 ± 6.067 15.293 ± 2.071
0.01 RAPS+TTA-Avg 35.600 ± 2.200 57.073 ± 5.914 13.111 ± 2.470 31.681 ± 3.057 54.169 ± 6.319 14.550 ± 1.425
0.01 RAPS+TTA-Learned 31.248 ± 2.177 53.195 ± 4.884 14.045 ± 1.323 32.702 ± 2.409 51.391 ± 5.211 13.803 ± 1.734
0.05 RAPS 5.637 ± 0.357 7.991 ± 1.521 3.624 ± 0.361 5.637 ± 0.357 7.991 ± 1.521 3.624 ± 0.361

0.05 RAPS+TTA-Avg 5.318 ± 0.113 7.067 ± 0.344 3.116 ± 0.210 4.908 ± 0.099 6.451 ± 0.279 3.249 ± 0.307
0.05 RAPS+TTA-Learned 4.889 ± 0.168 6.682 ± 0.447 3.571 ± 0.576 5.040 ± 0.176 6.788 ± 0.496 3.290 ± 0.186
0.10 RAPS 2.548 ± 0.074 2.914 ± 0.116 2.038 ± 0.153 2.548 ± 0.074 2.914 ± 0.116 2.038 ± 0.153

0.10 RAPS+TTA-Avg 2.470 ± 0.071 2.740 ± 0.026 1.780 ± 0.139 2.327 ± 0.086 2.610 ± 0.031 1.881 ± 0.118
0.10 RAPS+TTA-Learned 2.312 ± 0.054 2.625 ± 0.043 1.893 ± 0.187 2.362 ± 0.065 2.638 ± 0.026 1.840 ± 0.106

Table 1. Reductions in prediction set size across datasets, augmentation policies, and coverage specifications. Each entry corresponds
to the average prediction set size across 10 calibration/test splits. Bolded entries represent performance that is either (a) significantly better
compared to the baseline (RAPS), or (b) indistinguishable from the best approach. Table S8 reports achieved coverage. Corresponding
results for APS can be found in Table S2.

Figure 2. Robustness to distribution shift. We compare average prediction set size achieved by RAPS (yellow) to average prediction set
size achieved when combining RAPS with TTA-Learned (green). Results reflect the distribution of average prediction set size across 10
runs using ImageNet and ResNet50. We evaluate performance on different corruptions (x-axis) and different coverage guarantees (left,
middle, right). RAPS+TTA-Learned (green) produces a noticeable reduction in prediction set size, even when subject to distribution shift,
with no loss in coverage. Refer to Figure S1 in the supplement for a comparison of coverage achieved by both methods.

6. Results

We compare against RAPS, which outperformed other base-
lines in every experiment . (We provide results comparing
our method to APS and the Top-K baselines in the sup-
plement. Variants of each experiment across multiple α
and datasets are also in the supplement.) We then exam-
ine the dependence of these results on dataset, base model,
and class. We conclude by providing intuition about why
test-time augmentation improves the efficiency of confor-
mal predictors.

6.1. Reductions in prediction set size

We begin with results in the context of the expanded aug-
mentation policy. Learned test-time augmentation policies
produce meaningfully significant reductions in prediction
set size (RAPS+TTA-Learned in Table 1 and APS+TTA-
Learned in Table S1). TTA-Learned reduces prediction set

sizes significantly in 16 of the 18 cases, and performs com-
parably in the remaining 2. Across all cases, the combina-
tion of RAPS, TTA-Learned, and the expanded augmenta-
tion policy produces the smallest average set sizes.

TTA-Learned performs comparably or better than TTA-
Avg in all comparisons. Certain augmentations in the ex-
panded augmentation policy (blur, decrease sharpness, and
shear) are consistently assigned a weight of 0, while certain
augmentations are consistently included in learned poli-
cies (autocontrast, translate). Augmentations assigned zero
weight provide no additional information about the true la-
bel (for example, they may not preserve the label within the
image, or they may be redundant with other augmentations
included in the policy).

While TTA improves both RAPS and APS, the improve-
ments are larger for APS. This is because TTA, like RAPS,
tempers the predicted probabilities. TTA lowers the max-
imum predicted probability on average, thereby reducing



Expanded Augmentation Policy Simple Augmentation Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 RAPS 37.751 ± 2.334 33.624 ± 1.796 29.560 ± 3.481 37.751 ± 2.334 33.624 ± 1.796 29.560 ± 3.481

0.01 RAPS+TTA-Avg 35.600 ± 2.200 30.220 ± 1.774 27.203 ± 2.526 31.681 ± 3.057 27.206 ± 1.840 24.106 ± 2.100
0.01 RAPS+TTA-Learned 31.248 ± 2.177 25.722 ± 1.713 23.615 ± 1.656 32.702 ± 2.409 26.760 ± 1.974 24.765 ± 2.736

0.05 RAPS 5.637 ± 0.357 4.785 ± 0.102 4.376 ± 0.078 5.637 ± 0.357 4.785 ± 0.102 4.376 ± 0.078

0.05 RAPS+TTA-Avg 5.318 ± 0.113 4.433 ± 0.137 4.163 ± 0.185 4.908 ± 0.099 4.147 ± 0.122 3.868 ± 0.126
0.05 RAPS+TTA-Learned 4.889 ± 0.168 4.200 ± 0.200 3.824 ± 0.128 5.040 ± 0.176 4.194 ± 0.194 3.916 ± 0.356

0.10 RAPS 2.548 ± 0.074 2.267 ± 0.024 2.109 ± 0.027 2.548 ± 0.074 2.267 ± 0.024 2.109 ± 0.027

0.10 RAPS+TTA-Avg 2.470 ± 0.071 2.164 ± 0.031 2.049 ± 0.028 2.327 ± 0.086 2.093 ± 0.035 1.996 ± 0.018
0.10 RAPS+TTA-Learned 2.312 ± 0.054 2.099 ± 0.040 1.993 ± 0.026 2.362 ± 0.065 2.091 ± 0.041 1.988 ± 0.020

Table 2. Reductions in prediction set size across base classifiers on ImageNet. TTA-Learned can bridge the performance gap between
different classifiers (for example, outperforming ResNet-152 alone when combined with ResNet-101), and yields significant reductions in
set size regardless of the pretrained classifier used. We report achieved coverage in Table S9.

model overconfidence. Consequently, the predicted prob-
ability assigned to the remaining classes is higher. This
is why the expanded augmentation policy demonstrates
stronger performance than the simple augmentation policy:
it tempers the probabilities to a greater extent.

TTA-Learned preserves coverage across all experiments,
since it respects the assumption of exchangeability. In some
cases, TTA significantly improves coverage, although the
magnitude of this difference is small (results can be found
in Tables S8 and S9).

We next evaluate adaptivity using size stratified coverage
violation (SSCV). At low alpha (α = .01, and α = .05), TTA-
Learned improves efficiency without diminishing adaptivity
(Table S10).

6.2. Robustness to distribution shift

Next, we evaluate the performance of test-time aug-
mented conformal prediction on out-of-distribution exam-
ples. While conformal prediction does not guarantee cov-
erage in these settings, distribution shifts are ubiquitous in
practice [22]. Empirical performance is thus of practical
interest. The training procedures for both test-time aug-
mented conformal prediction and conformal prediction re-
main the same and use in-distribution examples from Im-
ageNet and a ResNet50 classifier. We evaluate each con-
formal predictor on four types of image corruptions drawn
from ImageNet-C [19]. Figure 2 plots the results; across all
corruptions and coverage guarantees, test-time augmented
conformal prediction produces smaller prediction sets than
conformal prediction alone. Importantly, test-time aug-
mented conformal prediction achieves this with no loss of
coverage (Figure S1).

6.3. Datasets, augmentation policies, and models
Dependence on dataset TTA consistently improves pre-
diction set sizes on ImageNet and iNaturalist, but not on
CUB-Birds. This may be because the validation set size
for CUB-Birds (2,827 images) is an order of magnitude
smaller than the validation sets for ImageNet (25,000 im-
ages) and iNaturalist (50,000 images). This is consistent
with our finding that effectiveness of TTA is positively cor-
related with the size of the validation set (Figure S4).

Dependence on augmentation policy We find that the
expanded augmentation policy produces larger reductions
in set size than the simple augmentation policy, primarily at
low α. This is in spite of the fact that the expanded augmen-
tation policy contains many augmentations outside of the
base classifier’s training-time augmentation policy. When
we vary the number of augmentations included in an aug-
mentation policy, we see that larger augmentation policies
also yield greater reductions in average prediction set size
(Figure S2). That said, the simple augmentation policy does
have its place; it requires fewer forward passes during infer-
ence. In the absence of a learned aggregation function, our
results suggest that aggregating using an average can still
improve the efficiency of conformal predictors (outperform-
ing the original conformal score in 11 comparisons, match-
ing performance in 3, and under-performing in 4).

Dependence on base model We tested the generalizabil-
ity of our results to other models by rerunning the Ima-
geNet experiments using ResNet-101 (accuracy of 77.4%)
and ResNet-152 (accuracy of 78.3%). Unsurprisingly, more
accurate models result in smaller prediction set sizes (Table
2). TTA variants of conformal prediction again produce sig-
nificant improvements in set size while maintaining cover-



Figure 3. (A) Class-conditional prediction set sizes. We plot the distribution of class-conditional prediction set sizes, for ImageNet and
ResNet-50 with α = .01. RAPS+TTA-Learned (green) produces a noticeable reduction in class-conditional prediction set sizes. (B, C)
Relationship between TTA improvements and original class set sizes and class difficulty. TTA introduces the largest improvements
for classes with the largest original prediction set sizes (B) and classes on which the underlying classifier is often incorrect (C). Each point
represents the average prediction set size for each class, across 10 splits.

Figure 4. (A) Effect of TTA-Learned on optimal Top-K: TTA-Learned significantly lowers the value of k required for Top-k prediction
sets to achieve coverage on ImageNet and iNaturalist, but not on CUB-Birds. (B,C) Effect of TTA-Learned on rank of true class:
TTA-Learned improves the rank of the true class among the sorted predicted probabilities for a given example for both ImageNet (B)
and iNaturalist (C). We plot the rank using the original predicted probabilities compared to the TTA-transformed probabilities, binning all
examples in the validation set into five equal-width bins. Dots that fall below the red line indicate that TTA improves the rank of the true
class.

age. We note that the combination of TTA with ResNet-101
produces smaller set sizes than the more complex ResNet-
152 alone. For example, when α is set to .01, RAPS+TTA-
Learned and ResNet-101 produce set sizes that contain, on
average, 26.5 classes, while RAPS and ResNet-152 produce
an average set size of 29.6.

6.4. Class-Specific Analysis
We have established that on average TTA is a useful ad-
dition to the conformal pipeline. We now investigate the
source of this improvement. We make two empirical obser-
vations. First, classes with larger predicted set sizes benefit
most from the introduction of TTA. Figure 3 shows that a
class’s average prediction set size is significantly correlated
with the change in set size produced by TTA-Learned (with

the expanded augmentation policy and α = .01, r = 0.89,
and p < 1e−10). Second, we find that class difficulty is sig-
nificantly associated with changes in set size introduced by
TTA (with the expanded augmentation policy and α = .01,
r = 0.55 and p < 1e-10). Prediction sets for classes that
are difficult to predict benefit more from TTA compared to
their easier counterparts. These observations are related;
harder classes receive larger set sizes, and consequently, of-
fer larger room for improvements in efficiency.

6.5. Intuition
Why does the addition of test-time augmentation produce
smaller prediction set sizes? In short, TTA improves top-
K accuracy. We verify this claim by estimating k such
that the uncertainty sets comprised of the top k predicted



classes for each example achieve a marginal coverage of
(1−α). We see that for those datasets (ImageNet and iNat-
uralist) where TTA produces significant reductions in set
size, TTA-transformed predictions–both with a simple aver-
age and learned weights– produce significantly lower values
for k compared to the original predictions (Figure 4A). This
is not true for CUB-Birds, on which TTA offers little to no
improvement. One could use such a procedure to determine
whether TTA is worth adding to a conformal pipeline with-
out collecting labeled data beyond the calibration dataset.

Another way to understand the impact of TTA is to con-
sider the effect on the ordering of classes. It has been ob-
served in the test-time augmentation literature that TTA of-
ten promotes the true class from the second-highest to the
highest predicted probability, thereby correcting the classi-
fication. This finding does not fully explain the value of
test-time augmentation to conformal prediction since only
3% of the prediction sets which reduce in size are associ-
ated with a corrected Top-1 classification. What TTA did do
was increase the predicted probability of the true class even
when it is predicted to be unlikely (for example, promoting
the true class from 200th most likely to 100th most likely).
We visualize this effect in Figure 4 by plotting the change
in true class rank (the index at which the true class appears
in the sorted list of predicted probabilities) for all examples
in the validation set, stratified into 5 equal-width bins. The
lower left point captures examples that are classified cor-
rectly; here, test-time augmentation introduces little to no
change. In subsequent bins, we see that TTA typically pro-
motes the rank of the true class. We also include the stan-
dard deviation across the true class ranks in the original pre-
dicted probabilities (x-axis) and the TTA-transformed prob-
abilities (y-axis).

7. Limitations

Learned test-time augmentation policies require two ingre-
dients: labeled data and multiple forward passes. Although
one can minimize costs by parallelizing computation or by
using the learned weights to identify which augmentations
to generate, inference will always cost more with test-time
augmentation. Our results are also limited to image classi-
fication. We do not consider other modalities, for which
appropriate transformations will substantially differ. Fu-
ture work should consider how these results may generalize
to non-vision tasks. Finally, test-time augmentation is one
approach to generating ensembles in conformal prediction.
Many other more computationally expensive approaches
exist. The tradeoff between computation and ensemble per-
formance remains a useful avenue for future work.

8. Conclusion
We show that test-time augmented conformal prediction
produces smaller sets than conformal prediction alone. The
proposed approach is effective, efficient, and simple: it re-
duces prediction set sizes by up to 30%, requires no model
re-training, and relies on a portion of labeled data already
available to split conformal predictors. Our experiments
also indicate that test-time augmented conformal prediction
exhibits greater efficiency under four common corruption-
based distribution shifts. Test-time augmentation is able to
do this by improving the underlying classifier’s robustness
to domain-specific invariances, in the form of data aug-
mentation. Efforts to improve the efficiency of conformal
predictors could, as a first step, aim to improve the robust-
ness of the underlying classifier. The performance of TTA-
Learned also suggests that there are settings in which it is
wise to use a portion of the labeled data to improve the un-
derlying model, instead of reserving all labeled data for the
calibration set. In sum, our work takes a step towards prac-
tically useful conformal predictors by improving efficiency,
without sacrificing adaptivity or coverage.
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Supplementary Material

S1. Experimental Details

S1.1. Augmentations

The simple augmentation policy consists of a random crop
and a horizontal flip, drawn from a widely used test-time
augmentation policy in image classification [23]. The
random crop pads the original image by 4 pixels and takes
a 256x256 crop of the resulting image. The expanded
augmentation consists of 12 augmentations; certain aug-
mentations are stochastic, while others are deterministic.
We design this set based on the augmentations included
in AutoAugment [11]. We exclude certain augmentations,
however, to exclude 1) redundancies among augmentations
and thereby make the learned weights interpretable and
2) augmentations are unlikely to be label-preserving. In
particular, we exclude CutOut (because it is clearly not
label-preserving in many domains) and exclude brightness,
contrast, saturation, and color for their overlap with
color-jitter. We also exclude contrast, because it is already
modified via autocontrast, and equalize and solarize for
their overlap with autocontrast and invert. This leaves us
the following augmentations:

• Shear: Shear an image by some number of degrees, sampled
between [-10, 10] (stochastic).

• Translate: Samples a vertical shift (by fraction of image height)
from [0, .1] (stochastic).

• Rotate: Samples a rotation (by degrees) from [-10, 10] (stochas-
tic).

• Autocontrast: Maximizes contrast of images by remapping pixel
values such that the the lowest becomes black and the highest
becomes white (deterministic).

• Invert: Inverts the colors of an image (deterministic).
• Blur: Applies Gaussian blur with kernel size 5 (and default σ

range of [.1, .2]) (stochastic).
• Posterize: Reduces the number of bits per channel to 4 (deter-

ministic).
• Color Jitter: Randomly samples a brightness, contrast, and sat-

uration adjustment parameter from the range [.9, 1.1] (stochas-
tic).

• Increase Sharpness: Adjusts sharpness of image by a factor of
1.3 (deterministic).

• Decrease Sharpness: Adjusts sharpness of image by a factor of
0.7 (deterministic).

• Random Crop: Pads each image by 4 pixels, takes a 256x256
crop, and then proceeds to take a 224x224 center crop (stochas-
tic).

• Horizontal Flip: Flips image horizontally (deterministic).

There are many possible expanded test-time augmentation
policies; this particular policy serves as an illustrative ex-
ample.

S1.2. Learning aggregation function
We learn ĝ by minimizing the cross-entropy loss with re-
spect to the true labels on the calibration set. Specifically,
we learning the weights using SGD with a learning rate of
.01, momentum of .9, and weight decay of 1e-4. We train
each model for 50 epochs. There are natural improvements
to our optimization, but this is not the focus of our work.
Instead, our goal is to highlight the surprising effectiveness
of TTA-Learned without the introduction of hyperparameter
optimization. We train all models using a machine equipped
with 4 Titan Xp GPUs, 2 Octa Intel Xeon E5-2620 CPUs,
and 1TB of RAM.

S2. Supplementary Results
S2.1. Test-Time Augmentation and APS
TTA-Learned combined with the expanded augmentation
policy produces the smallest set sizes when combined with
APS, across the datasets considered (Table S1) and each
base classifier (Table S3). In contrast to the results us-
ing RAPS, TTA-Learned does not significantly outperform
TTA-Avg when combined with APS. The central reason is
that the improvements TTA confers — namely, improved
top-k accuracy — do not address the underlying sensitiv-
ity of APS to classes with low predicted probabilities. As
Angelopoulos et al. [1] discuss, APS produces large predic-
tion sets because of noisy estimates of small probabilities,
which then end up included in the prediction sets. Both
TTA-Learned and TTA-Avg smooth the probabilities: they
reduce the number of low-probability classes by aggregat-
ing predictions over perturbations of the image. The benefit
that both TTA-Learned and TTA-Avg add to APS is thus
similar to how RAPS penalizes classes with low probabili-
ties.

S2.2. Comparison to Top-1 and Top-5
We expand Table 1 to include the Top-1 and Top-5 baselines
in Table S6. Unsurprisingly, neither outperform RAPS, and
consequently none outperform the combination of RAPS,
TTA-Learned, and the expanded augmentation policy.

S2.3. Comparison to minimizing focal loss
We expand Table 1 to include results for a variant of TTA-
Learned which uses a focal loss in place of the cross-
entropy loss. We conduct this exploration because empir-
ically, the focal loss has been known to produce better-
calibrated models. Table S7 reports our results. We see
little difference between results when using a different loss
function; RAPS+TTA-Leanred still outperforms RAPS + an
average over the test-time augmentations, and RAPS alone.
While this speaks to the method’s flexibility to different loss
functions, it is possible that the use of a loss function de-
signed to reduce prediction set size could produce better



performance.

S2.4. Impact on coverage
We provide exact values of coverage for the main experi-
ments here. In short, TTA-Learned combined with the ex-
panded augmentation policy never worsens coverage, and
in some cases, significantly improves it (although the im-
provements are small in magnitude). Coverage values for
the RAPS experiment across coverage values and datasets
can be found in Table S8 and coverage values for the RAPS
experiment across base classifiers can be found in Table S9.
Similarly, we provide coverage values for the APS exper-
iment across datasets (Table S2) and across models (Table
S3).

S2.5. Impact of different coverage guarantees and
datasets

We replicate the class-specific analysis for ImageNet at a
value of α = .05 (Figure S5), iNaturalist (Figure S6), and
CUB-Birds (Figure S7). All trends are consistent with re-
sults in the main text, save for one notable exception: when
TTA-Learned is applied to CUB-Birds, prediction set sizes
of the classes with the smallest prediction set sizes and
classes that are easier to predict benefit most from TTA. The
significance of the relationship between original prediction
set size and TTA improvement disappears when conducted
on an example level in this setting. This could be a result of
class imbalance in the dataset; it is possible that the class-
average prediction set size obscures important variation in
CUB-Birds.

S2.6. Impact of augmentation policy size
We also analyze the impact of augmentation policy size on
average prediction set size for CUB-Birds (Figure S2), to
understand if additional augmentations may produce larger
reductions in set size than we observe. Larger augmentation
policies appear to provide an improvement to average pre-
diction set size at α = .05, but offer little improvement for
α = .01.

S2.7. Impact of TTA data split
Learning the test-time augmentation policy requires a set of
labeled data distinct from those used to select the confor-
mal threshold. This introduces a trade-off: more labeled
data for test-time augmentation may result in more accurate
weights, but a less accurate conformal threshold, and vice
versa. We study this tradeoff empirically in the context of
ImageNet and the expanded augmentation policy and show
results in Figure S3. We find that, as more data is taken
away from the conformal calibration set, variance in perfor-
mance grows. This is in line with our intuition; we have
fewer examples to approximate the distribution of confor-
mal scores. However, at all percentages, test-time augmen-

tation introduces a significant improvement in prediction set
sizes over using all the labeled examples, and their original
probabilities, to determine the threshold. This suggests that
the benefits TTA confers outweigh the costs to the estima-
tion of the conformal threshold, a practically useful insight
to those who wish to apply conformal prediction in prac-
tice6

S2.8. Impact of calibration set size
We plot the relationship between calibration set size and av-
erage prediction set size in Figure S4 across two augmenta-
tion policies, two datasets, and two values of α. We see that
TTA is more effective the larger the calibration set, in the
context of ImageNet. In the context of CUB-Birds, it ap-
pears that TTA approaches equivalence with the conformal
score alone as the calibration set size increases.

S2.9. Impact of different backbone architecture
Our results in the main text are limited to a single architec-
ture (residual networks). Here, we provide evidence of gen-
eralizability to different architectures by replicating our Im-
ageNet results using MobileNetV2, across a range of cover-
age guarantees and both augmentation policies (Table S11)
and find consistent results, which support the versatility of
the proposed method.



Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 APS 98.493 ± 3.075 131.681 ± 3.515 19.436 ± 0.995 98.493 ± 3.075 131.681 ± 3.515 19.436 ± 0.995
0.01 APS+TTA-Avg 68.714 ± 2.856 84.546 ± 3.655 17.715 ± 1.523 92.027 ± 4.797 145.401 ± 4.635 19.152 ± 1.667
0.01 APS+TTA-Learned 69.009 ± 2.156 85.093 ± 2.768 17.766 ± 1.608 90.613 ± 6.421 144.134 ± 4.371 18.552 ± 1.326
0.05 APS 19.820 ± 0.482 33.481 ± 0.786 5.921 ± 0.192 19.820 ± 0.482 33.481 ± 0.786 5.921 ± 0.192
0.05 APS+TTA-Avg 14.308 ± 0.279 26.021 ± 0.282 4.870 ± 0.208 18.862 ± 0.498 37.370 ± 0.735 6.306 ± 0.350

0.05 APS+TTA-Learned 14.084 ± 0.241 26.289 ± 0.529 4.913 ± 0.145 19.119 ± 0.479 36.940 ± 0.632 6.361 ± 0.480

0.10 APS 8.969 ± 0.158 16.755 ± 0.394 3.455 ± 0.164 8.969 ± 0.158 16.755 ± 0.394 3.455 ± 0.164
0.10 APS+TTA-Avg 7.193 ± 0.101 14.583 ± 0.333 3.108 ± 0.114 8.787 ± 0.136 18.300 ± 0.418 3.609 ± 0.135
0.10 APS+TTA-Learned 7.215 ± 0.106 14.538 ± 0.395 3.046 ± 0.073 8.813 ± 0.180 18.086 ± 0.420 3.638 ± 0.146

Table S1. We replicate our experiments across coverage levels and datasets using APS, another conformal score. TTA-Learned combined
with the expanded augmentation policy produces the smallest set sizes across all comparisons. Interestingly, the simple augmentation
policy is not as effective in the context of iNaturalist when using APS.

Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 APS 0.980 ± 0.001 0.986 ± 0.000 0.985 ± 0.001 0.980 ± 0.001 0.986 ± 0.000 0.985 ± 0.001
0.01 APS+TTA-Avg 0.985 ± 0.001 0.989 ± 0.001 0.989 ± 0.002 0.981 ± 0.001 0.987 ± 0.000 0.986 ± 0.003
0.01 APS+TTA-Learned 0.985 ± 0.001 0.989 ± 0.001 0.990 ± 0.002 0.980 ± 0.002 0.987 ± 0.000 0.985 ± 0.002
0.05 APS 0.931 ± 0.002 0.952 ± 0.001 0.945 ± 0.004 0.931 ± 0.002 0.952 ± 0.001 0.945 ± 0.004
0.05 APS+TTA-Avg 0.944 ± 0.002 0.956 ± 0.001 0.949 ± 0.005 0.937 ± 0.002 0.960 ± 0.001 0.949 ± 0.004

0.05 APS+TTA-Learned 0.943 ± 0.002 0.957 ± 0.001 0.950 ± 0.005 0.937 ± 0.002 0.959 ± 0.001 0.950 ± 0.005

0.10 APS 0.896 ± 0.002 0.923 ± 0.001 0.915 ± 0.006 0.896 ± 0.002 0.923 ± 0.001 0.915 ± 0.006
0.10 APS+TTA-Avg 0.903 ± 0.002 0.930 ± 0.001 0.920 ± 0.007 0.905 ± 0.002 0.933 ± 0.001 0.922 ± 0.005
0.10 APS+TTA-Learned 0.904 ± 0.002 0.930 ± 0.001 0.918 ± 0.006 0.906 ± 0.002 0.932 ± 0.001 0.922 ± 0.004

Table S2. Coverage values associated with experiments in Table S1. TTA-Learned produces significant improvements in coverage —
larger in magnitude than in conjunction with RAPS — across when using the expanded augmentation policy. TTA-Learned produces no
drops in coverage when using the simple augmentation policy, a nd produces improvements at α = .01 and α = .05.

Figure S1. Impact on coverage. We plot achieved coverage for both RAPS and RAPS+TTA-Learned across several coverage guarantees
and distribution shifts. As expected, distribution shift leads conformal predictors to not meet the coverage guarantee. In each case, the
addition of TTA does not worsen coverage; in some cases (for example, given the contrast corruption and a coverage guarantee of 0.05) it
even improves coverage.



Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 APS 98.493 ± 3.075 88.279 ± 4.121 79.231 ± 4.570 98.493 ± 3.075 88.279 ± 4.121 79.231 ± 4.570

0.01 APS+TTA-Avg 68.714 ± 2.856 64.197 ± 2.336 62.885 ± 3.125 92.027 ± 4.797 77.344 ± 2.214 73.377 ± 3.600
0.01 APS+TTA-Learned 69.009 ± 2.156 64.852 ± 2.823 64.045 ± 3.398 90.613 ± 6.421 78.627 ± 4.101 74.571 ± 3.516
0.05 APS 19.820 ± 0.482 15.830 ± 0.611 14.437 ± 0.591 19.820 ± 0.482 15.830 ± 0.611 14.437 ± 0.591
0.05 APS+TTA-Avg 14.308 ± 0.279 11.085 ± 0.267 10.605 ± 0.373 18.862 ± 0.498 15.039 ± 0.405 14.206 ± 0.499
0.05 APS+TTA-Learned 14.084 ± 0.241 11.118 ± 0.209 10.595 ± 0.368 19.119 ± 0.479 15.011 ± 0.346 14.252 ± 0.486
0.10 APS 8.969 ± 0.158 6.671 ± 0.175 6.134 ± 0.163 8.969 ± 0.158 6.671 ± 0.175 6.134 ± 0.163
0.10 APS+TTA-Avg 7.193 ± 0.101 5.454 ± 0.098 5.111 ± 0.096 8.787 ± 0.136 6.838 ± 0.143 6.309 ± 0.178

0.10 APS+TTA-Learned 7.215 ± 0.106 5.490 ± 0.090 5.131 ± 0.061 8.813 ± 0.180 6.826 ± 0.121 6.311 ± 0.123

Table S3. Results across base classifiers using APS alone, APS + TTA-Avg, and APS + TTA-learned in conjunction with the expanded
augmentation policy (left) and simple augmentation policy (right). TTA-Learned and the expanded augmentation policy produce the
smallest prediction sets (on average).

Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 APS 0.980 ± 0.001 0.979 ± 0.002 0.978 ± 0.002 0.980 ± 0.001 0.979 ± 0.002 0.978 ± 0.002
0.01 APS+TTA-Avg 0.985 ± 0.001 0.985 ± 0.001 0.984 ± 0.001 0.981 ± 0.001 0.980 ± 0.001 0.978 ± 0.002
0.01 APS+TTA-Learned 0.985 ± 0.001 0.985 ± 0.001 0.984 ± 0.001 0.980 ± 0.002 0.980 ± 0.002 0.979 ± 0.002
0.05 APS 0.931 ± 0.002 0.930 ± 0.002 0.929 ± 0.002 0.931 ± 0.002 0.930 ± 0.002 0.929 ± 0.002

0.05 APS+TTA-Avg 0.944 ± 0.002 0.942 ± 0.001 0.942 ± 0.002 0.937 ± 0.002 0.935 ± 0.002 0.934 ± 0.002
0.05 APS+TTA-Learned 0.943 ± 0.002 0.942 ± 0.001 0.942 ± 0.002 0.937 ± 0.002 0.935 ± 0.001 0.934 ± 0.002
0.10 APS 0.896 ± 0.002 0.892 ± 0.002 0.893 ± 0.002 0.896 ± 0.002 0.892 ± 0.002 0.893 ± 0.002

0.10 APS+TTA-Avg 0.903 ± 0.002 0.901 ± 0.001 0.902 ± 0.001 0.905 ± 0.002 0.903 ± 0.001 0.903 ± 0.002
0.10 APS+TTA-Learned 0.904 ± 0.002 0.902 ± 0.001 0.902 ± 0.001 0.906 ± 0.002 0.903 ± 0.002 0.903 ± 0.002

Table S4. Coverage values for APS and TTA variants of APS across base classifiers, using ImageNet. TTA-Learned or TTA-Avg in
combination with the expanded augmentation policy significantly improve coverage in every comparison.

Expanded Aug Policy Simple Aug Policy

Method ResNet50 ResNet101 ResNet152 ResNet50 ResNet101 ResNet152

Original 0.761 ± 0.002 0.773 ± 0.001 0.783 ± 0.002 0.761 ± 0.002 0.773 ± 0.001 0.783 ± 0.002
TTA-Avg 0.764 ± 0.002 0.778 ± 0.001 0.788 ± 0.002 0.77 ± 0.002 0.783 ± 0.001 0.792 ± 0.002
TTA-Learned 0.771 ± 0.002 0.785 ± 0.001 0.793 ± 0.002 0.771 ± 0.002 0.784 ± 0.001 0.793 ± 0.002

Table S5. TTA effect on classifier performance. We report differences in classifier performance using a learned test-time augmentation
policy compared to a simple average (TTA-Avg) and no test-time augmentation (Original). TTA-Learned offers small improvements over
a simpler average and the original model across architectures. FILL IN THE REST, explain how TTA’s improvement to Top-1 accuracy
alone is small, and does not fully explain the value of test-time augmentation to conformal prediction.



ImageNet iNaturalist CUB-Birds

Alpha Method Prediction Set Size Empirical Coverage Prediction Set Size Empirical Coverage Prediction Set Size Empirical Coverage

0.01 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008

0.01 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003

0.01 RAPS 37.751 ± 2.334 0.990 ± 0.001 61.437 ± 6.067 0.990 ± 0.001 15.293 ± 2.071 0.990 ± 0.001

0.01 RAPS+TTA-Avg 35.600 ± 2.200 0.991 ± 0.001 57.073 ± 5.914 0.990 ± 0.001 13.111 ± 2.470 0.991 ± 0.002

0.01 RAPS+TTA-Learned 31.248 ± 2.177 0.990 ± 0.001 53.195 ± 4.884 0.990 ± 0.001 14.045 ± 1.323 0.991 ± 0.002

0.05 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008

0.05 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003

0.05 RAPS 5.637 ± 0.357 0.951 ± 0.002 7.991 ± 1.521 0.954 ± 0.002 3.624 ± 0.361 0.955 ± 0.007

0.05 RAPS+TTA-Avg 5.318 ± 0.113 0.951 ± 0.001 7.067 ± 0.344 0.952 ± 0.002 3.116 ± 0.210 0.954 ± 0.007

0.05 RAPS+TTA-Learned 4.889 ± 0.168 0.952 ± 0.001 6.682 ± 0.447 0.954 ± 0.002 3.571 ± 0.576 0.957 ± 0.007

0.10 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008

0.10 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003

0.10 RAPS 2.548 ± 0.074 0.906 ± 0.004 2.914 ± 0.116 0.907 ± 0.003 2.038 ± 0.153 0.919 ± 0.014

0.10 RAPS+TTA-Avg 2.470 ± 0.071 0.905 ± 0.005 2.740 ± 0.026 0.908 ± 0.002 1.780 ± 0.139 0.912 ± 0.014

0.10 RAPS+TTA-Learned 2.312 ± 0.054 0.905 ± 0.004 2.625 ± 0.043 0.909 ± 0.003 1.893 ± 0.187 0.919 ± 0.016

Table S6. Comparison to Top-1 and Top-5 baselines. Results comparing performance against Top-K baselines. In each setting, conformal
prediction produces either smaller set sizes, higher coverage, or both compared to the Top-K baselines.

Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet CUB-Birds ImageNet CUB-Birds

0.01 RAPS+TTA-Learned+Focal 32.612 ± 3.799 13.416 ± 1.991 31.230 ± 1.510 15.503 ± 2.364
0.01 RAPS+TTA-Learned+Conformal 32.257 ± 3.608 13.776 ± 2.198 31.716 ± 2.078 14.432 ± 2.184
0.01 RAPS+TTA-Learned+CE 31.248 ± 2.177 14.045 ± 1.323 32.702 ± 2.409 13.803 ± 1.734
0.05 RAPS+TTA-Learned+Focal 4.906 ± 0.195 3.194 ± 0.202 4.956 ± 0.239 3.313 ± 0.331
0.05 RAPS+TTA-Learned+Conformal 4.867 ± 0.122 3.302 ± 0.312 4.996 ± 0.405 3.412 ± 0.406
0.05 RAPS+TTA-Learned+CE 4.889 ± 0.168 3.571 ± 0.576 5.040 ± 0.176 3.290 ± 0.186
0.10 RAPS+TTA-Learned+Focal 2.363 ± 0.085 1.791 ± 0.102 2.308 ± 0.045 1.860 ± 0.131
0.10 RAPS+TTA-Learned+Conformal 2.308 ± 0.068 1.865 ± 0.163 2.330 ± 0.072 1.868 ± 0.122
0.10 RAPS+TTA-Learned+CE 2.312 ± 0.054 1.893 ± 0.187 2.362 ± 0.065 1.840 ± 0.106

Table S7. Alternate training objectives. Results across datasets for two augmentation policies and three coverage specifications using a
focal loss. We set γ to be 1, in line with prior work [14]. Each entry corresponds to the average prediction set size across 10 calibration/test
splits. Both the focal and conformal loss do not outperform the cross-entropy loss; for simplicity, we report all results using the cross-
entropy loss.

Figure S2. Impact of augmentation policy size. We see that larger policy sizes translate to a greater improvement (in terms of the ratio of
average prediction set sizes using RAPS+TTA-Learned to average prediction set sizes using RAPS alone) for α = .05. For α = .01, there
is no clear trend.



Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 RAPS 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Avg 0.991 ± 0.001 0.990 ± 0.001 0.991 ± 0.002 0.990 ± 0.001 0.990 ± 0.001 0.991 ± 0.002
0.01 RAPS+TTA-Learned 0.990 ± 0.001 0.990 ± 0.001 0.991 ± 0.002 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.002
0.05 RAPS 0.951 ± 0.002 0.954 ± 0.002 0.955 ± 0.007 0.951 ± 0.002 0.954 ± 0.002 0.955 ± 0.007
0.05 RAPS+TTA-Avg 0.951 ± 0.001 0.952 ± 0.002 0.954 ± 0.007 0.951 ± 0.001 0.953 ± 0.003 0.957 ± 0.004
0.05 RAPS+TTA-Learned 0.952 ± 0.001 0.954 ± 0.002 0.957 ± 0.007 0.951 ± 0.002 0.952 ± 0.002 0.956 ± 0.007
0.10 RAPS 0.906 ± 0.004 0.907 ± 0.003 0.919 ± 0.014 0.906 ± 0.004 0.907 ± 0.003 0.919 ± 0.014
0.10 RAPS+TTA-Avg 0.905 ± 0.005 0.908 ± 0.002 0.912 ± 0.014 0.905 ± 0.004 0.908 ± 0.002 0.915 ± 0.010
0.10 RAPS+TTA-Learned 0.905 ± 0.004 0.909 ± 0.003 0.919 ± 0.016 0.907 ± 0.004 0.908 ± 0.003 0.913 ± 0.011

Table S8. Comparison of achieved coverage. Coverage values for RAPS, RAPS+TTA-Avg, and RAPS+TTA-Learned across datasets and
coverage values. RAPS+TTA-Learned never decreases the coverage achieved by RAPS alone, and in some cases, improves it significantly
(as in the case of ImageNet and iNaturalist).

Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 RAPS 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Avg 0.991 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Learned 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.05 RAPS 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002
0.05 RAPS+TTA-Avg 0.951 ± 0.001 0.951 ± 0.001 0.952 ± 0.002 0.951 ± 0.001 0.952 ± 0.002 0.952 ± 0.002
0.05 RAPS+TTA-Learned 0.952 ± 0.001 0.952 ± 0.002 0.952 ± 0.002 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002
0.10 RAPS 0.906 ± 0.004 0.906 ± 0.004 0.906 ± 0.002 0.906 ± 0.004 0.906 ± 0.004 0.906 ± 0.002

0.10 RAPS+TTA-Avg 0.905 ± 0.005 0.905 ± 0.002 0.908 ± 0.002 0.905 ± 0.004 0.908 ± 0.004 0.910 ± 0.002
0.10 RAPS+TTA-Learned 0.905 ± 0.004 0.907 ± 0.003 0.911 ± 0.002 0.907 ± 0.004 0.908 ± 0.004 0.910 ± 0.002

Table S9. Comparison of coverage across base classifiers. Coverage values for TTA variants of conformal prediction compared to RAPS
alone, across different base classifiers on ImageNet. TTA-Learned preserves coverage across all comparisons and significantly improves
upon the achieved coverage using ResNet-101 with RAPS (granted, the magnitude of this improvement is small).

Alpha Method ImageNet iNaturalist CUB-Birds

0.01 RAPS 0.0112 ± 0.0043 0.0207 ± 0.0043 0.0076 ± 0.0031

0.01 RAPS+TTA-Learned 0.0113 ± 0.0067 0.0247 ± 0.0027 0.0046 ± 0.0026

0.05 RAPS 0.2134 ± 0.0348 0.0609 ± 0.0217 0.0112 ± 0.0105

0.05 RAPS+TTA-Learned 0.3338 ± 0.0994 0.0899 ± 0.0520 0.0350 ± 0.0412

0.10 RAPS 0.1318 ± 0.0696 0.0852 ± 0.0151 0.2218 ± 0.1260

0.10 RAPS+TTA-Learned 0.3198 ± 0.0977 0.1008 ± 0.0058 0.1931 ± 0.1208

Table S10. Effect of test-time augmented conformal prediction on adaptivity. We show results in the context of ResNet-50 and RAPS,
across several coverage guarantees. We compute size-stratified coverage violation (SSCV) for each run as described in Sec. 5, and report
the mean and standard deviation of SSCV across runs here. Test-time augmentation does not significantly diminish adaptivity at each
coverage guarantee considered (assessed via a two-sample t-test, p > 0.05).



Figure S3. Robustness to size of dataset used to train test-time augmentation policy. We plot the percentage of data used to train
the TTA policy on the x-axis and the average prediction set size on the y-axis. Error bars describe variance over 10 random splits of
the calibration and test set. We can make two observations: 1) as the data used to train the TTA policy increases and the data used to
estimate the conformal threshold decreases, variance in performance grows and 2) across a wide range of data splits, learned TTA policies
(green) introduce improvements to achieved prediction set sizes compared to the original probabilities (gold). These results also suggest
that relatively little training data is required to learn a useful test-time augmentation policy; in this case, 2-3 images per class, or 10% of
the available labeled data.

Figure S4. Impact of calibration set size. We plot the relationship between calibration set size and average prediction set size across
two values of alpha, two augmentation policies, and two datasets (ImageNet and CUB-Birds). For ImageNet, larger calibration set sizes
correlate with larger and more consistent improvements from the addition of TTA, where the improvement flattens out for calibration set
sizes larger than 50%, or 12,500 images (12-13 per class). TTA does appear to be able to improve average prediction set size even with a
calibration set size of 1,250 (5% of original ImageNet calibration set size). For CUB-Birds, a dataset on which TTA does not perform as
well, we see that TTA performs comparably to RAPS alone the larger the calibration set.



α Method ImageNet (Expanded) ImageNet (Simple)

0.01 RAPS 52.332 ± 8.970 52.332 ± 8.970

0.01 RAPS+TTA-Avg 45.604 ± 1.515 42.431 ± 1.516

0.01 RAPS+TTA-Learned 40.872 ± 1.377 40.843 ± 1.707

0.05 RAPS 8.872 ± 0.417 8.872 ± 0.417

0.05 RAPS+TTA-Avg 8.304 ± 0.322 7.945 ± 0.861

0.05 RAPS+TTA-Learned 7.723 ± 0.916 7.609 ± 1.027

0.10 RAPS 3.677 ± 0.104 3.677 ± 0.104

0.10 RAPS+TTA-Avg 3.480 ± 0.056 3.298 ± 0.069

0.10 RAPS+TTA-Learned 3.321 ± 0.289 3.348 ± 0.275

Table S11. Replicated results on MobileNetV2. We observe trends similar to those reported to in the main text in the context of
MobileNetV2. In short, RAPS combined with a learned test-time augmentation policy (RAPS+TTA-Learned) produces the smallest set
sizes across the considered coverage guarantees (α ∈ {0.01, 0.05, 0.10}) and augmentation policies.

Figure S5. Class-specific performance for ImageNet, for a coverage of 95% α = .05. Using the expanded augmentation policy
RAPS+TTA-Learned produces a noticeable shift in class-average prediction set sizes to the left. There is a significant correlation between
original prediction set size and improvements from TTA (middle) and between class difficulty and improvements from TTA (right).

Figure S6. Class-specific performance for iNaturalist, for α = .01 (top) and α = .05 (bottom). We see a consistent relationship between
TTA improvements and original class-average prediction set size (middle) and class difficulty (right). Estimates of class-specific accuracy
on iNaturalist are quite noisy because there are 10 images per class (which produces distinct accuracy bands).



Figure S7. Class-specific performance for CUB-Birds, for α = .01 (top) and α = .05% (bottom). These graphs show an example for
which TTA-Learned does not produce improvements in average prediction set size (computed across all examples). Interestingly, behavior
on a class-specific level is different between α = .01 and α = .05. For α = .01, results are consistent with other datasets: classes which
originally receive large prediction set sizes and classes which are more difficult benefit most from the addition of TTA. For α = .05, the
exact opposite is true. While a majority of classes are hurt by TTA, classes that benefit from TTA are easier and receive smaller prediction
set sizes.
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