Multiple Instance Learning for ECG Risk Stratification

Divya Shanmugam, Davis Blalock, John Guttag

Feed in the whole signal?

• High sampling rate (11 million samples per patient)

Feed in the whole signal?

• High sampling rate (11 million samples per patient)

Use statistical features?

- Typical of existing work
- Approximates characteristics of risk signals

Feed in the whole signal?

• High sampling rate (11 million samples per patient)

Use statistical features?

- Typical of existing work
- Approximates characteristics of risky signals

Learn what a risky set of heartbeats look like!

We reframe the risk stratification task as a **multiple instance learning** problem.

- * Labels of collections of instances are available, but labels of instances are not
- * Assumption: patients at higher risk of cardiovascular death have more risky instances than those at lower risk

Our method consists of three steps: instance extraction, classification, and aggregation

Classification

$$\mathsf{F}(\mathsf{M}) \to [0,1]$$

Aggregation

Produces a state-of-the-art ECG-based risk score for cardiovascular death

Takeaways

- * We propose a general-purpose method for incorporating very long time series into risk models
- * Using this method, we produce a state-of-the-art ECGbased risk score!

Thanks!