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1 EXPERIMENTAL DETAILS
We include relevant details to our experimentation below and pro-
vide code to reproduce all results.

1.1 Dataset Pre-Processing
For MovieLens-20M, we filter out users with fewer than 100 movies
rated to produce a dataset of 51869 users and 26654 unique movies.
MovieLens-L randomly samples 5000 users from this set andMovieLens-
S samples 1000 users. For GoogleLocal, we filter out users with fewer
than 150 ratings to produce a dataset of 1571 users and 275402
unique places. GoogleLocal-L randomly samples 1500 users from
this set and GoogleLocal-S samples 500 users. Table 1 summarizes
the dimensionality and sparsity of the resulting datasets.

1.2 Parameter Fitting
In line with past work, our method and each baseline is subject
to the same parameter fitting approach: weighted non-linear least
squares (NLSw). NLSw weights each sample by (1/

√
=), where =

is the sample size. This is done to account for the heteroscedastic
relationship between performance and dataset size.

1.3 Implementation
We fit performance curves using the OLS implementation included
in the Python statsmodels library [Seabold and Perktold 2010] and
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the Levenberg-Marquardt algorithm via the least-squares imple-
mentation in the Python sklearn library [Pedregosa et al. 2011]. All
experiments were run on a 2.8 GHz Intel Core i7 processor with
16GB of available RAM on MacOS High Sierra.

1.4 Choice of thresholds
We evaluate each method at three thresholds for the return on
additional data: 5e-7, 2e-7, and 5e-8. We select these thresholds
because they translate to thresholds that are distributed over the
data collection process (see Figure ⁇ to observe typical range of
empirical returns for MovieLens-L and GoogleLocal-L).

1.5 Implementation of Oracle
To make our calculation of the slope using for the Oracle baseline
explicit, recall that we generate |A|/@ subsamples over the course
of data collection. To estimate the return in MSE at subsample
8 , we divide the difference in empirical performance at subsam-
ple 8 − 2 and subsample 8 + 2 by their difference in sample sizes,
or 4@. This produces an approximation of the true return that is
sufficiently smooth; we experiment with a different smoothing pro-
cedure (estimation via subsample 8 − 1 and subsample 8 + 1) later in
the supplemental material.

2 SUPPORTING FIGURES
2.1 Minimization on Returns: Consistent

Results
We plot consistent results in Figure 1. These results align with
those discussed in the body of the paper; while our method appears
noisier, it reflects the noise of the empirically derived return in
additional data. If one were to minimize with respect to a less noisy
metric than performance given additional examples, this curve
may look smoother. This presents yet another tradeoff between the
baselines and the proposed method: while our method produces
stopping points most accurate to the empirical return on additional
data, the baselines offer a “smoother” decision rule.

2.2 Comparisons to Other Curve Models
2.2.1 Ablation of Stages in Piecewise Power Law. FIDO uses a piece-
wise power law technique that consists of three power laws, or one

https://doi.org/10.1145/3531146.3533148
https://doi.org/10.1145/3531146.3533148


FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Divya Shanmugam, Fernando Diaz, Samira Shabanian, Michèle Finck, and Asia J. Biega

Figure 1: Evaluation of performance curves over the course of data collection. We plot the diminishing returns results for
MovieLens-S and GoogleLocal-S visually here. Note that the margin with which we outperform baselines is smaller in the case
of MovieLens-S; this is due to the smaller diminishing returns region, which can be seen in Figure 4.

for each stage of data collection outlined by [Hestness et al. 2017].
In this section, we provide an ablation study of the necessity of
each stage by testing FIDO with one power law, two power laws,
and three power laws (Table 1). In short, the use of three power
laws produces more accurate stopping criteria on average, but the
stopping criteria are not significantly different from modeling two
stages. This is because the ”small data region” is negligibly small in
most cases, and performance is not affected by modeling the small
data region and the power law region as one power law.

2.2.2 Nonparametric Regression. Each of the baselines considered
are parametric approximations of the relationship between dataset
size and performance. Past work in learning curve estimation con-
siders the value of nonparametric approaches. Here, we explore the
value of such an approach and find that the estimated performance
curves are much noisier than those produced by parametric curve
models. Table 2 shows that FIDO achieves more accurate stopping
criteria across datasets and thresholds, by a large margin.

2.3 Performance Curves for GoogleLocal-S and
MovieLens-S

We include the performance curves for each dataset considered
in this work in Figure 3. We include the performance curves for
MovieLens-L and GoogleLocal-L, as shown in Figure ⁇ for ease of
comparison.

2.4 Performance Curves for Active vs. Random
Feature Acquisition

We include the true performance curve using Stability as a feature
acquisition algorithm in Figure 4. Note the noise introduced over
runs compared to the performance curves produced by random
feature acquisition (Figure ⁇).

2.5 Illustrative Performance Curve Fits
We measure the quality of the performance curve fit via metrics rel-
evant to our data minimization objectives (extrapolations and slope
estimation) in the body of the paper and support these results with
a visualization of performance curve fits (Figure 5). We plot each

method’s performance curve fit halfway through data collection
from GoogeLocal-L. Examining the predicted performance curve
(orange) for each baseline, we can see that it departs from the true
performance curve most towards the end of data collection, due to
differences in modeling the stage of diminishing returns.

3 ALTERNATE DATA MINIMIZATION
OBJECTIVE: MINIMIZATION BY RELATIVE
PERFORMANCE

In the body of the paper, we consider one data minimization ob-
jective: minimization based on the return of additional data. FIDO
is flexible to other performance-based objectives as well. In this
section, we explore one such objective: minimization based on
the relative performance, which stops data collection based on a
percentage of the model’s performance given infinite data.

Definition. Minimization in reference to a relative performance
rather than an absolute performance may be preferable because it is
difficult to identify a good goal performance without understanding
(1) model performance in the absence of additional data and (2)
model performance in the presence of all available data. Parame-
ter 6 represents the goal fraction of performance gain and dictates
when the stopping criterion should be enforced. The parameter
can be set globally, or individually for each user. The fraction of
performance gain is a relative performance metric, scaled between
the model performance given no additional data and model per-
formance given all available data. Under the considered scenario,
the data minimization task is to collect the minimum number =
of user-feature-value triples from queryable set P such that the
fraction of performance gain achieved equals at least 6 ∈ [0, 1]:

f" − f"

f" − f"
≥ 6 (1)

Results. Minimization by relative performance requires approxi-
mating the percentage of performance gain using the performance
curve learned in Step 2 and ceasing data collection once the pre-
dicted performance gain exceeds user-specified goal6.The proposed
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Dataset Threshold FIDO (1 Stage) FIDO (2 Stages) FIDO (3 Stages) Oracle

GoogleLocal-L -5.0e-07 0.32 ± 0.01 0.29 ± 0.02 0.29 ± 0.02 0.27 ± 0.01
GoogleLocal-L -2.0e-07 0.61 ± 0.01 0.42 ± 0.03 0.42 ± 0.03 0.41 ± 0.02
GoogleLocal-L -5.0e-08 1.00 ± 0.00 0.65 ± 0.04 0.68 ± 0.05 0.68 ± 0.05
GoogleLocal-S -5.0e-07 0.71 ± 0.01 0.42 ± 0.06 0.42 ± 0.06 0.47 ± 0.03
GoogleLocal-S -2.0e-07 1.00 ± 0.00 0.48 ± 0.09 0.51 ± 0.14 0.58 ± 0.06
GoogleLocal-S -5.0e-08 1.00 ± 0.00 0.56 ± 0.04 0.59 ± 0.08 0.64 ± 0.10
MovieLens-L -5.0e-07 0.13 ± 0.00 0.13 ± 0.00 0.13 ± 0.00 0.13 ± 0.00
MovieLens-L -2.0e-07 0.27 ± 0.00 0.24 ± 0.01 0.25 ± 0.02 0.23 ± 0.01
MovieLens-L -5.0e-08 0.76 ± 0.01 0.52 ± 0.05 0.53 ± 0.05 0.53 ± 0.02
MovieLens-S -5.0e-07 0.53 ± 0.01 0.46 ± 0.05 0.46 ± 0.05 0.45 ± 0.03
MovieLens-S -2.0e-07 1.00 ± 0.00 0.67 ± 0.12 0.68 ± 0.14 0.79 ± 0.08
MovieLens-S -5.0e-08 1.00 ± 0.00 0.97 ± 0.07 0.99 ± 0.03 1.00 ± 0.00

Table 1: Ablation of the Number of Stages in FIDO’s Performance Curve Model. We vary the number of stages we assume
to exist in the performance curve between 1 (assuming the entire performance curve can be described by a power law) and
3 (aligning with the number of stages described by [Hestness et al. 2017]. FIDO achieves the closest stopping criterion (on
average) to Oracle when the framework models three stages of data collection.

Dataset Threshold NonParam FIDO Oracle

GoogleLocal-L -5.0e-07 0.28 ± 0.01 0.29 ± 0.02 0.27 ± 0.01
GoogleLocal-L -2.0e-07 0.30 ± 0.01 0.42 ± 0.03 0.41 ± 0.02
GoogleLocal-L -5.0e-08 0.30 ± 0.01 0.68 ± 0.05 0.68 ± 0.05
GoogleLocal-S -5.0e-07 0.32 ± 0.01 0.42 ± 0.06 0.47 ± 0.03
GoogleLocal-S -2.0e-07 0.32 ± 0.01 0.51 ± 0.14 0.58 ± 0.06
GoogleLocal-S -5.0e-08 0.32 ± 0.02 0.59 ± 0.08 0.64 ± 0.10
MovieLens-L -5.0e-07 0.15 ± 0.01 0.13 ± 0.00 0.13 ± 0.00
MovieLens-L -2.0e-07 0.25 ± 0.01 0.25 ± 0.02 0.23 ± 0.01
MovieLens-L -5.0e-08 0.28 ± 0.01 0.53 ± 0.05 0.53 ± 0.02
MovieLens-S -5.0e-07 0.39 ± 0.01 0.46 ± 0.05 0.45 ± 0.03
MovieLens-S -2.0e-07 0.39 ± 0.01 0.68 ± 0.14 0.79 ± 0.08
MovieLens-S -5.0e-08 0.39 ± 0.01 0.99 ± 0.03 1.00 ± 0.00

Table 2: Comparison of FIDO to non-parametric regression. FIDO achieves more accurate stopping criteria than nonparametric
regression across datasets and thresholds.

method ceases data collection at a point closest to the goal percent-
age compared to baselines and its performance offers insight into
the reliability of relative-performance-based stopping criteria.

We evaluate each stopping criterion across multiple datasets and
goal fractions of performance 6 ∈ [.5, .6, .7, .8, .9]. The plots show
that lower goals are more difficult to adhere to, producing larger
gaps between the true performances accomplished by each method
and the goal performance (plotted in red). While the method per-
forms significantly better than baselines in some cases (particularly
for higher goal percentages on GoogleLocal-L), we cannot confi-
dently conclude that the proposed method produces a significantly
better stopping criteria across datasets. This suggests the selection
of the appropriate performance curve model may depend both on
the dataset and the data minimization objective.

It is worth noting that most methods, save for 3P-PL-Exp, collect
more data than is necessary for the goal performance, producing
true performance gains that exceed 6. This is a direct result of
each method’s underestimation of the error on the test set given
the queryable set P, as discussed in earlier sections. Minimized

data collection must be conscious of this behavior, because such
algorithms are liable to collect too much data for a given goal.

4 ADDITIONAL RELATEDWORK
4.1 Active Feature Acquisition (AFA).
AFA concerns the intelligent collection of feature-values given a
fixed budget. There are several well-known AFA techniques: (i) us-
ing matrix completion with the assumption of low rank [Bhargava
et al. 2017; Huang et al. 2018; Mavroforakis et al. 2017] (ii) estimat-
ing the expected accuracy improvement for tasks such as clustering
or classification [Melville et al. 2005; Vu et al. 2007] (iii) applying
techniques to address ice-start [Gong et al. 2019] and cold-start
problems [Schein et al. 2002] and (iv) using variational techniques
to approximate the posterior distribution [Sutherland et al. 2013].
The performance of AFA is often evaluated based on a fixed budget.
FIDO lies adjacent to this area in that the framework aims to learn
a performance-based budget given a feature acquisition algorithm.
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Figure 2: Performance on Relative Performance MinimizationThe proposed method (green) lands closest to the goal percentage
of relative performance on average, compared to existing methods. While the piecewise power law produces a power law
curve that is significantly more accurate than others in forecasting performance, the estimates of relative performance remain
comparable to baselines.

Figure 3: Performance Curves given Random Feature Acquisition Each graph represents the improvement in performance over
the course of data collection. Note the smaller diminishing returns region for MovieLens-S.

Figure 4: Performance curves using AFA method Stability. Each line represents an individual split of the dataset.

4.2 Sample Complexity.
Sample complexity corresponds to the number of samples required
for a learning algorithm to achieve an error rate of n with a proba-
bility of (1−X). Literature on sample complexity takes a theoretical
approach to the central task of our work: tying data collection to
model performance. Earlier work quantifies sample complexity as-
suming random sample acquisition [Ehrenfeucht et al. 1989], while

more recent work studies sample complexity for active learning
methods [Balcan et al. 2010; Yan et al. 2019] and recommendation
systems [Heckel and Ramchandran 2017]. Hestness et al. [2017]
note the gap between theoretical guarantees and empirical trends
for performance curves and highlight this as an area for future
work.
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Figure 5: Performance curve fits halfway through data col-
lection for our method and the 4 baselines considered. The
black dotted line denotes the amount of data provided to
each performance curve fit—note that 2P-Power-Law-Initial
sees no more than the initial dataset.
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