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Abstract

Data minimization is a legal obligation defined in the Euro-
pean Union’s General Data Protection Regulation (GDPR)
as the responsibility to process an adequate, relevant, and
limited amount of personal data in relation to a process-
ing purpose. However, the lack of technical interpretations
of the principle in the context of machine learning systems
has inhibited adoption. In this paper, we follow a technical
interpretation of data minimization that ties processing pur-
pose to system performance. We propose a data collection
algorithm that operationalizes this interpretation to predict a
performance-based stopping criterion. The algorithm builds
on prior work that relates dataset size to performance by mod-
eling distinct stages of data collection separately. We show
that this approach produces stopping criterion that are signif-
icantly more accurate than past approaches on two datasets.
We conclude with practical recommendations for the imple-
mentation of data minimization.

Introduction
Article 5(1)(c) of the European Union’s Data Protection
Regulation (GDPR 2016) as well as data protection laws in
other jurisdictions mandate a principle of data minimization:

”Personal data shall be: [...] adequate, relevant and lim-
ited to what is necessary in relation to the purposes for
which they are processed (data minimisation)”

The requirement serves as a guideline for respectfully pro-
cessing data. Among the components of minimization, lim-
itation requires that residual data, which is unnecessary for
a declared processing purpose, is minimized out. Depend-
ing on the specific stage of the machine learning pipeline
(data collection, pre-processing, training, or storage), this
may mean discarding or not collecting such data in the first
place. Research on privacy by design (Gürses, Troncoso, and
Diaz 2015) highlights data collection as a key area to im-
plement data minimization. Moreover, reduction of unnece-
sary data yields direct benefits to data processors in terms
of improved computational efficiency and decreased storage
costs.
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Perspectives and prior work on data minimization De-
spite legal requirements, the principle has witnessed lit-
tle adoption in the context of algorithmic profiling and
decision-making systems, due to a dearth of specific com-
putational interpretations and guidelines. Indeed, qualitative
research has shown a lack of data minimization standards
among practitioners (Senarath and Arachchilage 2018).
Moreover, legal scholars have highlighted how the adoption
of this principle risks limiting the success of data-intense
systems (Zarsky 2017). A recent audit of a recommenda-
tion app highlighted the tension between the limitation and
adequacy requirements—minimization of sensitive personal
attributes may inhibit the detection of discriminatory ef-
fects (Galdon Clavell et al. 2020).

In contrast, recent empirical research has shown that it
is possible to produce similar results from data-intense sys-
tems with significantly less data (Biega et al. 2020; Chow
et al. 2013; Vincent, Hecht, and Sen 2019; Wen et al. 2018).
These findings are a consequence of the diminishing returns
property that data collection exhibits across applications and
domains (Hestness et al. 2017; Krause and Horvitz 2010;
Tae and Whang 2020). Recognizing that limiting data is pos-
sible, legal guidelines point to algorithmic techniques that
could be incorporated into minimization pipelines, includ-
ing feature selection (Binns and Gallo 2019) or examination
of learning curves (Datatilsynet 2018).

Computational interpretations of limitation in data min-
imization and concrete proposals for using the aforemen-
tioned algorithmic techniques remain open questions. Sev-
eral challenges contribute to this gap. Reports by the Nor-
wegian and British data protection authorities note that a
key issue is not the reduction of data quantity, but identi-
fying which data is necessary and which is excessive in rela-
tion to a processing purpose (Datatilsynet 2018; ICO 2017).
Addressing this challenge, Biega et al. (2020) have recently
proposed to interpret the processing purpose in data-intense
systems through model performance metrics, an interpre-
tation termed performance-based data minimization. Our
work follows this interpretation. We address the question of
how data processors may proactively satisfy performance-
based minimization requirements.

Contributions In this paper, we present a data collection
algorithm that adaptively learns a performance-based stop-



ping criterion to satisfy minimization requirements, either
globally or for each data subject. Our approach builds on a
recent insight from the machine learning literature that for-
malizes three distinct phases in the performance curves of
learning algorithms—the small data phase, the power law
phase, and the diminishing returns phase (Hestness et al.
2017). We show that these phases can also be observed in
the context of user data collection and that modeling these
phases separately allows us to learn the performance curve
effectively as data is acquired and more accurately than ex-
isting approaches. Moreover, the method easily adapts to
different underlying feature acquisition algorithms.

Finally, we propose how the data collection phases might
be used to guide decisions concerning when to keep collect-
ing data and how much is enough. We conclude the paper by
demonstrating impact analyses which ought to be performed
when selecting underlying components for minimized data
collection, such as active feature acquisition (AFA) methods.
We find that AFA can lead to unequal, concentrated data col-
lection from few users, in addition to decreased minimiza-
tion performance for evolving user communities or when
sensitive features are excluded from initial data collection.

Related Work
Beyond the related work on data minimization discussed
in the Introduction, our technical approach is closely re-
lated to empirical research on performance curve estima-
tion. This line of work examines the relationship between
dataset size and model performance. The literature consid-
ers a large spread of metrics for model performance, in-
cluding sensitivity (Hajian-Tilaki 2014), error rates (Gürses,
Troncoso, and Diaz 2015), accuracy (Cho et al. 2015; Ko-
lachina et al. 2012), and confidence (Dobbin, Zhao, and Si-
mon 2008; Kalayeh and Landgrebe 1983). Each work as-
sumes a power law relationship. Alternatives to the power
law curve have been considered and shown to be compara-
ble in accuracy (Domhan, Springenberg, and Hutter 2015;
Kolachina et al. 2012).

The work most closely related to our own is that of Tae
and Whang (2020), in which the authors build on perfor-
mance curve research to present a selective data collection
framework. The performance curves are used to identify
classes which require more data to achieve equitable er-
ror rates. Tae and Whang (2020) assume a power law rela-
tionship throughout the data collection process and address
the small-data region by using weighted non-linear least
squares. In contrast, we model regions of the performance
curve separately, and most importantly, use the performance
curve to identify an appropriate budget.

Ideas broadly related to data minimization exist across
fields in machine learning; we include an extended discus-
sion about active feature acquisition (Schein et al. 2002;
Vu et al. 2007; Huang et al. 2018; Sutherland, Póczos, and
Schneider 2013; Mavroforakis et al.; Bhargava, Ganti, and
Nowak 2017), sample complexity (Ehrenfeucht et al. 1989;
Yan, Chaudhuri, and Javidi 2019; Balcan, Hanneke, and
Vaughan 2010; Heckel and Ramchandran 2017), and suffi-
cient sample sizes (Suresh and Chandrashekara 2012; Man-
ski and Tetenov 2016) in the appendix.

Interpreting Limitation in Data Minimization
Legal Perspective The GDPR requires that no more data

than necessary to achieve a declare processing purpose (in
line with the purpose limitation principle) be processed.
Data minimization is both a key principle under Article
5(1)(c) GDPR as well as a component of data protection by
design and by default. It can be broken down into three dis-
tinct requirements: adequacy, relevance and necessity. The
data that is processed must be relevant, requiring that only
data that is pertinent to achieve the purpose is processed.
Personal data must also be adequate, meaning that no ir-
relevant data should be processed. In some circumstances,
adequacy may require that more data is processed, such as
where the available data is not suitable to make inferences
about an underrepresented group of users. Finally, personal
data can only be processed where it is necessary to achieve
the declared purpose. Thus, where the same result can be
achieved without processing certain data, that data ought to
be minimized out. In accordance with data minimization,
where there is a choice between using ordinary personal data
and sensitive personal data the former ought to be given pref-
erence, and raw data should only be processed where it is not
feasible to pseudonymise that data.

Computational Interpretation We build on the approach
put forward by Biega et al. (2020) in which the processing
purpose is associated with improvements in model perfor-
mance metrics. This interpretation raises an open question of
what it means to minimize data in relation to such a metric-
based purpose. The main conceptual proposal in this paper is
to maximally limit data while reaching target fraction of the
(predicted) best possible model performance, either globally
or for each data subject. We term this interpretation relative-
performance-based data minimization.

Scenario and notation We formalize this interpretation as
follows. We assume a scenario where a data processor oper-
ates a service (a model M , such as a classifier or a recom-
mender system) and collects data from a pool of queryable
data P (consisting of user-feature-value triples) generated
by a population of users U . The acquired data is used to train
M and make predictions for each user u ∈ U . We further
assume that, when the data collection starts, the data proces-
sor has access to some initial data: I for training the model
and V set aside to validate model performance predictions.
Such initial data would include any data that is historical,
purchased, or collected in different markets.

During data collection, the processor applies a feature
acquisition policy H(P, n) which queries n feature values
from P . Queries equate to the collection of a specific user-
feature-value for inclusion in the training set for model M .
Performance of M is measured on a held-out test set using
performance metric σ(M, I ∪H(P, n)). User-specific per-
formance of M is evaluated on a held-out test set of user
ratings for u, and termed σu(M, I ∪H(P, n)).

Finally, g, which is a fraction of performance gain, is a
parameter dictating when the stopping criterion should be
enforced. The parameter can be set globally, or individually
for each user. The fraction of performance gain is a relative
performance metric, scaled between the model performance



given no additional data and model performance given all
available data.

Relative-performance-based data minimization We
minimize in reference to a relative performance rather than
an absolute performance because it is difficult to identify
a good goal performance without understanding (1) model
performance in the absence of additional data and (2) model
performance in the presence of all available data. Under
the considered scenario, the data minimization task is to
collect the minimum number n of feature-value pairs from
queryable set P such that the fraction of performance gain
achieved equals at least g:

σ(M, I)− σ(M, I ∪H(P, n))
σ(M, I)− σ(M, I ∪ P)

≥ g (1)

where σ(M, I) is the starting performance, σ(M, I ∪
H(P, n)) is the current performance, and σ(M, I∪P) is tar-
get performance achievable with all the available data. Note
that in this paper we assume that the model performance in-
creases as we collect more data, and the starting and target
performance correspond to the worst and best performance,
accordingly. This is a common assumption in the perfor-
mance curve literature (Kolachina et al. 2012; Domhan,
Springenberg, and Hutter 2015), but there are cases in which
additional data may hurt model performance. In these set-
tings, a different family of curve models should be used.

Stages of Data Collection
We define a performance-based stopping criterion assuming
an existence of a relationship between dataset size and per-
formance. Crucially, this relationship is not linear. We plot
the true relationship for the GoogleLocal-L recommendation
dataset (Pasricha and McAuley 2018) in Figure 1 and con-
trast it with a figure from Hestness et al. (2017) that identi-
fies three stages of data collection. The stages are:

1. The small data region, where the collected data is insuffi-
ciently representative and model performance is poor.

2. The power-law region, where there is a direct trade-off be-
tween the amount of data collected and the performance.

3. The irreducible error region, where the collection of more
data does not lead to model improvements.

We make two observations from Figure 1. The first is
that the stages of data collection identified by Hestness
et al. (2017) in machine translation exist for recommenda-
tion datasets. This is true for both the small and large sam-
ple of GoogleLocal. We include preprocessing details for the
dataset in the Experimental Set-Up section.

The second observation is that a mere 10% of each dataset
lands data collection outside of the small data region for
both of the datasets. A majority of data collection occurs be-
tween the power law region and the diminishing returns re-
gion. This has important implications for modeling the per-
formance curve. Modeling the entire region using the power
law curve produces underestimates when predicting error
given additional data. In later sections, we show that model-
ing each stage separately mitigates this effect.

Figure 1: Model performance over the course of data collec-
tion. On the left, a figure from Hestness et al. (2017) plots
the stages of data collection. On the right, we plot model per-
formance over data collection from GoogleLocal-L. Graphs
for GoogleLocal-S, MovieLens-L, and MovieLens-S are in
the appendix and show the same trend.

Implications for Data Collection Practice From a prac-
tical perspective, the data collection stages could be used
to decide when collecting more data is necessary for reli-
able model performance (the small data region), when a user
should decide whether to trade more data for better perfor-
mance (the power-law region), and when the collection can
stop (the irreducible error region).

The distinction of these phases is also pertinent from a
legal perspective. In particular, the application of data mini-
mization’s necessity criterion would indicate that continued
collection of more personal data in the third stage would be
hard to justify as personal data is not “necessary” to improve
the model and meet its underlying purpose.

Minimized Data Collection Method
The method accepts four parameters: feature acquisition al-
gorithmH , modelM , performance metric σ and a goal frac-
tion of performance gain g ∈ [0, 1]. There are three steps: (1)
H acquires a portion of the available data (Data Collection),
(2) the method fits a performance curve to the new data and
updates the predicted fraction of performance gain (Curve
Fitting), and (3) Steps 1 and 2 repeat until the predicted
fraction of performance gain exceeds g (Stopping Criterion
Evaluation). We outline these steps in more detail below and
provide pseudo-code in the appendix.

Data collection In this step, a feature acquisition algo-
rithm H collects q observations from the pool of available
observations P . Smaller q translates to more conservative
data collection processes and to more accurate estimates of
the stopping criterion at the expense of decreased efficiency
(smaller q means that Curve Fitting and Stopping Criterion
Evaluation are executed at smaller intervals). In practice, one
might choose to set a larger q early on during data process-
ing, and decrease it as the data processing continues.

Curve fitting The key novel idea underpinning this step
is to predict the lower bound and upper bound on model
performance—given a set of previously collected data A—
with separate power law curves, denoted fl and fu respec-
tively. To simulate the conditions of varying performance,
we fit those curves on samples of A of different sizes. More
specifically, given the current data increase parameter q, we



generate |A|q samples such that the size of each consecutive
sample increases by q, where |A| denotes the cardinality of
A. The function to predict the lower bound learns from the
half of the samples of the smallest size, while the function
to predict the upper bound is informed by the half of the
samples of the largest size. For each sample, we evaluate
model performance on V , and use the resulting pairs of val-
ues (sample size and performance on the validation set) to
fit the performance curves.

For both fl and fu, we assume a power law relationship
and learn the parameters A and b for the following equation:

f(x) = Ax−b (2)
We linearize this equation to produce:

log(f(x)) = −b log(A)− b log(x) (3)
Past work shows that linearizing the equation produces

more stable performance curve estimates (Xiao et al. 2011).
One can fit the learning curve using an ordinary least squares
(OLS) method. The intuition behind learning two separate
curves is straightforward: it is likely that the beginning and
end of data collection lie in separate portions of the data
collection curve, and the same power law curve does not
adequately describe both portions. In the event they do not,
there is no harm to modeling them separately.

We choose to train fu on the largest sample sizes be-
cause the function is ultimately used to forecast model per-
formance given additional data and this extrapolation is best
informed by larger sample sizes, which are more likely to lie
in the same data collection phase.

The choice to train fl to estimate performance given I
is more subtle. One could use the validation set performance
ofM given I. However, this performance is a point estimate
of the true value. By training fl, we allow our estimate to be
informed by sample sizes close to |I|.
Stopping criterion evaluation Given the number of ac-
quired observations, we use the learning curves to estimate
the current fraction of total performance and compare it with
the user-specified goal. We calculate the current fraction of
performance gain as follows:

p̂ =
fl(|I|)− fu(|A|)

fl(|I|)− fu(|I ∪ P|)
(4)

Data collection stops when p̂ exceeds g. We use the mag-
nitude of P in our experiments, but in practice, data proces-
sors may not know the magnitude of P and may assume it
to be arbitrarily large, since model performance ultimately
flattens out.

Experimental Set-Up
Datasets We perform experiments on two real-world
datasets in the recommender system domain: MovieLens-
20M (Harper and Konstan 2015) and GoogleLocal (He,
Kang, and McAuley 2017; Pasricha and McAuley 2018).
We sample each dataset at two sizes, to examine how re-
sults generalize across number of users and sparsity levels.
Dataset statistics can be found in Table 1 and preprocessing
pipelines can be found in the appendix.

Dataset # Users # Items Sparsity
MovieLens-L 5000 17400 1.7%
MovieLens-S 1000 11529 2.6%

GoogleLocal-L 1500 265807 0.1%
GoogleLocal-S 500 104766 0.3%

Table 1: Each dataset is subject to the same initial, valida-
tion, and test splits, where each split is 10% of the total rat-
ings. Each split is stratified across users. The remaining 70%
of the data is the queryable rating set Q. We produce 5 ran-
dom splits of each dataset according to these divisions. All
results are reported over the 5 splits.
Baselines Methods relating sample size to performance
commonly assume a power law model (Hestness et al. 2017;
Tae and Whang 2020). We include Linear to test the assump-
tion of a power law relationship, Initial to determine the ben-
efit of updating the learning curve as data is acquired, and
non-linear least squares NLS to represent the traditional ap-
proach to fitting learning curves. Tae and Whang (2020) and
Figueroa et al. (2012) use a weighted version of NLS to ac-
count for heteroscedastic relationship between performance
and dataset size, which we term NLSw. Implementation de-
tails for each baseline are included below.

• Linear: Recommends the collection of X% of data to de-
liver X% of possible performance.

• Initial: Fits power law curve (Eq. (3)) on subsamples of I
using non-linear least squares.

• NLS: Fits power law curve (Eq. (3)) on subsamples of A
using non-linear least squares. This baseline fits the learn-
ing curve as data is collected.

• NLSw: Fits power law curve (Eq. (3)) on subsamples of
A, weighted by 1√

N
, where N is the sample size. This

is to account for the higher variance in performance from
smaller samples.

Hyperparameters We assume the model M operated by
the data processor is a FunkSVD (Funk 2006) recommen-
dation system. We use the same hyperparameters q and r
across all experiments: We set the number of latent fea-
tures in FunkSVD to be 30, and q is 2% of the number
of queryable entries. We assume random feature acquisition
unless otherwise stated.

Evaluation metrics We evaluate performance using the
standard recommendation evaluation metric, mean-squared
error (MSE). Additionally, we consider the fraction of per-
formance gain (defined previously), and per-user MSE.

Implementation We fit performance curves using the
OLS implementation included in the Python statsmodels li-
brary (Seabold and Perktold 2010). All experiments were
run on a 2.8 GHz Intel Core i7 processor with 16GB of avail-
able RAM on MacOS High Sierra.

Experiments for Method Evaluation
Forecasting performance A successful performance-
based stopping criterion relies on accurately forecasting per-
formance given additional data. In this section, we evaluate
our method’s estimate of performance given the entirety of



Figure 2: Predicted performance, fu(M, I ∪ P), over the
course of data collection. Our method (green) matches the
true performance (red) most closely at all stages of data col-
lection. Figures best displayed in color.

P . We show that our method significantly outperforms base-
lines in this task.

Figure 2 plots our results. Each method underestimates er-
ror given P . This is in line with prior work in machine trans-
lation, which shows the underestimation of test error us-
ing curve-fitting approaches (Kolachina et al. 2012). Across
datasets and sample sizes, our method estimates this quan-
tity most accurately. This is because our method trains exclu-
sively on larger sample sizes, ignoring smaller sample sizes
completely. Importantly, this departs from the common un-
derstanding of the performance curve, which uses a single
power law curve to characterize the data collection process.

Between the baselines, NLSw improves upon NLS be-
cause it down-weights smaller sample sizes. While Initial
does not adapt to sample sizes beyond the initialized data, its
estimate for the performance given P remains accurate for
MovieLens-S. Taking a closer look, we see that this makes
sense—MovieLens-S contains a larger power-law region,
allowing accurate extrapolations from curves fit to smaller
sample sizes.

Predicting fraction of performance How accurate is
the predicted fraction of performance gain? To investigate,
we look at the predicted fraction of performance by each
method over the course of data collection and plot the esti-
mates in Figure 3. We include the true relationship in red.

The predicted performance gain for all methods is more
accurate at higher and lower fractions. Our method, plot-
ted in green, comes closest to the true relationship during
all stages of data collection. The baselines produce very
similar estimates for fraction of performance gain over the
course of data collection. NLS and NLSw produce simi-
lar estimates because their differing characteristic - down-
weighting smaller sample sizes - disappears with larger sam-
ple sizes, as in the case of recommendation datasets.

Figure 3: Comparison of our method’s predicted fraction of
performance p̂ (green) to baseline predictions and the true
fraction of performance p (red).

Figure 4: True performances achieved using stopping crite-
ria given different g and different data collection methods.
We see that across g, the true performance using our method
(green) is closest to the goal g (red).

Performance of stopping criterion In this section, we ex-
amine the effects of using the proposed minimized data col-
lection method. In particular, we compare the true perfor-
mance achieved by our method with baselines introduced
previously in Figure 4.

We evaluate each stopping criteria across multiple
datasets and goal fractions of performance. We see that the
proposed method accomplishes a true performance closest to
the goal performance g across all datasets and goals consid-
ered. Lower goals are more difficult to adhere too, producing
larger gaps between the true performances accomplished by
each method and the goal performance (plotted in red).

It is worth noting that each method collects more data



Figure 5: Robustness of minimized data collection method
to different initialization assumptions. Plots for Stability (top
row) and QBC Show that our method exceeds or matches
the ability of baselines to predict performance (left), predict
fraction of performance (center), and produce an accurate
stopping criterion (right).

than is necessary for the goal performance, producing true
performances that exceed g. This is a direct result of each
method’s underestimation of the error on the test set given
the queryable set P , as discussed in earlier sections. Min-
imized data collection must be conscious of this behavior,
because such algorithms are liable to collect too much data
for a given goal.

Robustness to Feature Acquisition Algorithms

Thus far, we have considered data collection where observa-
tions are queried randomly from Q. AFA methods improve
upon this approach by instead querying feature values based
on their uncertainty (Huang et al. 2018; Freund et al. 1997;
Chakraborty et al. 2013) or contribution to a downstream
task (Melville et al. 2005; Vu et al. 2007). Successful AFA
methods collect less data than random feature acquisition
and deliver equivalent performance. Recent work has shown
that this success is often dependent on experimental condi-
tions (Munjal et al. 2020). In this section, we examine the
performance of minimized data collection in the context of
AFA algorithms. We find that our performance curve esti-
mates are still more accurate than existing approaches given
different feature acquisition algorithms.

Setup We consider two popular AFA methods: Stability
and Query-by-Committee (QBC). QBC (Chakraborty et al.
2013) produces feature uncertainty estimates from the vari-
ance over matrix imputations by three approaches (k-NN,
EM, and SVD), and Stability (Huang et al. 2018) estimates
the uncertainty of a feature by its variance over SVD re-
constructions of different ranks. Each algorithm requests the
highest variance feature-values. For Stability, we follow the
approach of (Huang et al. 2018) and set the ranks to be
[1, 2, 3].

Figure 6: User-specific performance metrics when mini-
mized data collection learns one curve for all users (left) and
a curve for each user (right). Unsurprisingly, we see that the
mode of user-specific performance increases as g increases.
Interestingly, this is not the case when learning user-specific
performance curves and suggests future areas of work for
learning accurate user-specific performance curves.

Results Our method remains superior to the baselines in
predicting the performance given Q, predicting the fraction
of performance gain, and enforcing a stopping criterion for
both Stability and QBC. Plots for these comparisons can be
found in Figure 5. It is worth noting that margin at which the
proposed data collection outperforms existing approaches is
larger for Stability. This may be attributed to committee-
based approach of QBC; predicting the behavior of a com-
mittee including three distinct feature acquisition models is
more difficult than just one, as is the case with Stability.

The second observation we can draw from these experi-
ments is that existing approaches are more competitive given
Stability and QBC. The performance curves for these feature
acquisition algorithms can be found in the supplement and
each suggest that the power law region is expanded by AFA
algorithms.

Effects on Per-User Performance
Previous sections discuss minimized data collection in terms
of global system performance. In this section, we examine
the method’s effect on per-user metrics. We discuss how user
performance-based data minimization departs from tradi-
tional assumptions for performance curves and recommend
areas for further research.

Setup We contrast the performance of our method in terms
of the user fraction of performance pu in two settings. In
the first, we replicate the setting discussed in previous sec-
tions and learn a performance curve for the whole dataset. In
the second, the data collection method learns a performance
curve per user and applies a stopping criterion based on goal
g to each curve. We calculate user fractions of performance
pu by evaluating σ(M, I ∪ H(P, n)) exclusively on data
from user u. This produces a pu for each user.

Results Note that the axes for each histogram extend from
-1 to 2. This is because more data does not necessarily trans-



Figure 7: We show that the performance achieved during
data collection depends on both the AFA algorithm em-
ployed and the initialization conditions (left). Error bars are
reported over 5 random initializations. We also show that a
small portion of users bear the majority of the data collection
burden in a histogram of the quantity of features acquired per
user by Stability from MovieLens-S halfway through data
collection.

late to increased per-user performance. Two factors are re-
sponsible: 1) The small validation set size for each user pro-
duces noisy performance estimates and 2) the collection of
additional data could still hurt user performance if this data
is not representative. In this setting, the assumption of mono-
tonically increasing performance over data collection does
not hold, and accordingly, the minimized data collection
method does not perform as well. One key takeaway from
this experiment is that the fraction of performance may not
be an appropriate metric for data minimization on a per user
level. We include comments on how the proposed data col-
lection method may be further adapted to the per user setting
in the appendix.

Impact of Active Feature Acquisition on Users
Our minimized data collection method relies on an underly-
ing feature acquisition algorithm and AFA is a natural choice
for limited data collection. In this section, we illuminate sev-
eral impacts of standard AFA algorithms on data subjects.

Disparate data collection burden First of all, AFA al-
gorithms collect different number of features from different
users. Figure 7 (right), plots a histogram of the quantity of
collected data over users for AFA algorithm Stability, for
dataset MovieLens-S (similar trends exist for other setups).

AFA algorithms ”exploit” a small number of users by col-
lecting a large number of feature-values from them. Yet,
our experiments also show that increased data collection
significantly correlates with better performance for individ-
ual users. Thus, the overall behavior of AFA in the context
of data minimization raises questions of both the user fair-
ness as well as user agency. Should users be able to decide
whether they would like to become high-collection users in
exchange for higher performance? How marginal must this
improvement be before to no longer justify data collection?

Sensitivity to initial system data In Figure 7 (left), we
examine the dependence of minimized recommendation per-
formance on (1) the type of initialized data and (2) the fea-
ture acquisition algorithm employed. We consider two ad-
ditional types of initialization; user-subset (initialized ran-
domly across subset of users) and item-subset (initialized
randomly across subset of items). In each of these cases, the
test set is formed from a random sample that includes ratings
from all users.

Several observations have important consequences for the
practice of data minimization. Note that when the initializa-
tion data is a random sample across users and items, AFA
algorithms perform similarly. However, when the initializa-
tion data contains only a subset of users, or only a subset of
items, non-random AFA begin decreasing in performance.
This observation is consequential in cases where (i) the pop-
ulation of data subjects is evolving (initialization data would
not contain the data of users who join at a later time), and
(ii) the data processor is not initially allowed to collect cer-
tain feature values because of other constraints (such as the
feature being sensitive).

Discussion
This work addresses the lack of technical interpretations of
the legal requirement of data minimization. Our findings
offer takeaways for researchers, data processors, and legal
scholars. We propose a method for data minimization dur-
ing data collection that relies on adaptively learning the rela-
tionship between dataset size and performance and accounts
for three distinct stages of data collection. Each data collec-
tion stage is characterized by quantitatively different con-
tributions of new data to the system performance, with the
second stage allowing users to trade data for improved per-
formance, and the last stage characterized by no significant
performance increase and thus offering a definite stopping
point. Moreover, we find that, because of these quantitative
changes in data collection characteristics, algorithms learn-
ing performance-based stopping criteria tend to overestimate
the the amount of data necessary to meet a target perfor-
mance. Last but not least, we demonstrate that AFA meth-
ods may incur unequal distribution of collected data across
users, and decreased performance for evolving communities
or in cases where certain features are excluded from initial
data collection.

While our paper provides new methods, insights and prac-
tical guidelines for implementing data minimization in prac-
tice in automated decision-making and profiling systems,
several open questions remain. Those include, for instance,
designing better per-user minimization methods, automatic
detection of data collection stages, and studying the techni-
cal interplay between data minimization and other data pro-
tection principles.
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