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Abstract

Test-time augmentation—the aggregation of predictions
across transformed versions of a test input—is a common
practice in image classification. Traditionally, predictions
are combined using a simple average. In this paper, we
present 1) experimental analyses that shed light on cases
in which the simple average is suboptimal and 2) a method
to address these shortcomings. A key finding is that even
when test-time augmentation produces a net improvement
in accuracy, it can change many correct predictions into
incorrect predictions. We delve into when and why test-time
augmentation changes a prediction from being correct to
incorrect and vice versa. Building on these insights, we
present a learning-based method for aggregating test-time
augmentations. Experiments across a diverse set of models,
datasets, and augmentations show that our method delivers
consistent improvements over existing approaches.

1. Introduction
Data augmentation—the expansion of a dataset by

adding transformed copies of each example—is a common
practice in image classification. Typically, data augmenta-
tion is performed when a model is being trained. However,
it can also be used at test-time to obtain greater robustness
[25, 30, 8], improved accuracy [19, 32, 28, 16, 20], or es-
timates of uncertainty [20, 29, 1, 34]. Test-Time Augmen-
tation (TTA) entails pooling predictions from several trans-
formed versions of a given test input to obtain a “smoothed”
prediction. For example, one could average the predictions
from various cropped versions of a test image, so that the
final prediction is robust to any single unfavorable crop.

TTA is popular because it is easy to use. It is simple to
put into practice with off-the-shelf libraries [24, 6], makes
no change to the underlying model, and requires no addi-
tional data. However, despite its popularity, there is rela-
tively little research on the design choices involved in TTA.
TTA depends on two choices: which augmentations to in-
clude, and how to aggregate the resulting predictions. We
focus on the latter.

Figure 1: Percentage of predictions corrected (orange)
and corrupted (blue) by standard TTA. Past work on
TTA typically only examines the net improvement (green).
This paper analyzes how standard TTA, which simply av-
erages model predictions on transformed versions of a test
image, can produce corruptions, and proposes a method that
accounts for these factors.

Fig. 1 shows the performance of a TTA policy that in-
cludes flips, crops, and scales applied to several models on
ImageNet [10]. While the net improvement (green) is posi-
tive for each network architecture, a sizeable number of pre-
dictions are also changed to be incorrect (blue). Past TTA
work typically only examines the net improvement, without
considering why a TTA policy may actually degrade perfor-
mance for many classes.

The goal of our work is twofold: (1) to understand which
predictions TTA changes and why for a particular model
and dataset and (2) to develop a method based on these in-
sights that increases TTA performance. To do this, we first
provide an empirical analysis of the corruptions introduced
by TTA, and discuss implications for the design of TTA
policies. Following this analysis, we present a learning-
based method for TTA that depends upon these factors. In
contrast to work on learning the choice of augmentations
[21, 17, 27], we focus specifically on how we can learn
to aggregate augmentation predictions. The solution we
propose—learning optimal weights per augmentation, for



a given dataset and model—can be applied in conjunction
with other methods.

The proposed method represents a lightweight replace-
ment for the simple average. Our method can offer a Top-1
accuracy increase of up to 2.5%, and is nearly free in terms
of model size, training time, and implementation burden.
Our contributions are as follows:

• We provide insights into TTA that reveal why certain
predictions are changed from correct to incorrect, and
vice versa. We derive these insights from extensive ex-
periments on ImageNet and Flowers-102 and include
practical takeaways for the use of TTA.

• We develop a TTA aggregation method that learns to
aggregate predictions from different transformations
for a given model and dataset. Our method sig-
nificantly outperforms existing approaches, providing
consistent accuracy gains across numerous architec-
tures, datasets, and augmentation policies. We also
show that the combination of TTA with smaller models
can match the performance of larger models.

2. Related Work
Image augmentation at test-time has been used to mea-

sure model uncertainty [20, 29, 1, 34, 2], to attack models
[31, 22, 11], to defend models [25, 30, 8], and to increase
test accuracy [15, 27, 13, 28, 32, 19]. Because our focus is
on test-time augmentation for the purpose of increasing im-
age classification accuracy, we limit our discussion to work
considering this problem.

Most works describing a test-time augmentation method
for increasing classification accuracy present it as a sup-
plemental detail, with a different methodological contribu-
tion being the focus of the paper. Krizhevsky et al. [19]
make predictions by “extracting five 224 × 224 patches...as
well as their horizontal reflections...and averaging the pre-
dictions made by the network’s softmax layer on the ten
patches.” He et al. [13] describe a similar setup and in-
clude an additional variation that incorporates rescaling of
the input in addition to cropping and flipping. The crop-
ping, scaling, and flipping combination is also employed by
Simonyan et al. [28] and Szegedy et al. [32], with differing
details in each case. While most of these papers report re-
sults with and without test-time augmentation, none offers
a systematic investigation into the merits of each augmenta-
tion function or how their benefits might generalize to other
networks or datasets.

The works most closely related to our own are those
of Sato et al. [27], Howard et al. [15], Molchanov et
al. [21], and Kim et al. [17]. The first seeks to improve
classification accuracy by employing test-time augmenta-
tion. Their method samples augmentation functions ran-
domly for each input, and makes predictions by averaging

the log class probabilities derived from each transformed
image. In contrast, we optimize the function that aggregates
the predictions from each. Howard et al. [15] consider the
problem of selecting a set of useful augmentations and pro-
poses a method of choosing augmentations described as a
“greedy algorithm” that “starts with the best prediction and
at each step adds another prediction until there is no addi-
tional improvement.” The method is evaluated on a single
network and dataset, and does not learn to aggregate pre-
dictions as we do. Most recently, Molchanov et al. [21]
propose Greedy Policy Search, which constructs a test-time
augmentation policy by greedily selecting augmentations to
include in a fixed-length policy. The predictions generated
from the policy are aggregated using a simple average. Sim-
ilarly, Kim et al. [17] present a method to learn an instance-
aware test-time augmentation policy. The method selects
test-time augmentations with the lowest predicted loss for
a given image, where the predicted loss is learned from the
training data.

Our work differs in that we focus on the factors that influ-
ence test-time augmentation and, given those factors, how
we can learn to aggregate augmentation predictions.

3. Why weight augmentations differently?

Typically, test-time augmentation methods aggregate
model predictions by averaging [19, 27, 17]. While this is a
reasonable approach, there are cases in which non-uniform
weights are preferable. We analyze the errors simple aver-
aging introduces on Flowers-102 and ImageNet to under-
stand when non-uniform weights would be useful.

3.1. Setup

Datasets We use two datasets for our analysis: ImageNet
(1000 classes) and Flowers-102 (102 classes). Our prepro-
cessing pipeline is identical for ImageNet and Flowers-102:
we resize the shortest dimension of each image to 256 pix-
els, followed by center cropping to produce a 256x256 im-
age. We chose these datasets for their differences in diffi-
culty and domain—the architectures we considered achieve
>90% accuracy on Flowers102 and 70-80% on ImageNet.
For each dataset, we apply normalization parameters based
on the training set to each test image.

Models We evaluate the performance of four architec-
tures on ImageNet and Flowers-102: ResNet-18 [13],
ResNet-50 [13], MobileNetV2 [26], InceptionV3 [33]. We
downloaded pretrained models from the PyTorch model zoo
trained with an augmentation policy of horizontal flips and
random crops [5]. To produce pretrained models for Flow-
ers102, we use the finetuning procedure presented by [23].
This procedure starts with a pretrained ImageNet network
and freezes the weights in all but the last layer. The net-



Figure 2: Percentage of predictions corrected (orange)
and corrupted (blue) by two TTA policies (Standard,
Expanded). Results for two datasets (ImageNet, Flowers-
102) and four popular neural network models. Models are
ordered by accuracy on classification task. We provide anal-
ysis of factors responsible for corruptions in Section 3.3.

work is then trained on the new dataset for 100 epochs, us-
ing a batch size of 32, SGD optimizer (learning rate=.01,
momentum=.9), and a dropout probability of .2.

Augmentation Policies We consider two augmentation
policies. Standard reflects the typical augmentations used
for TTA (flips, crops, and scales) and Expanded includes
a more comprehensive set of augmentations, such as inten-
sity transforms. Readers interested in the specific augmen-
tations may refer to the appendix. Each policy replaces the
model’s original predictions with an average of predictions
on transformed images.

The Standard test-time augmentation policy produces 30
transformed versions per test image (a cross product of 2
flips, 5 crops, and 3 scales). The 5 crops correspond to the
center crop and a crop from each corner. The three scale
parameters are 1 (original image), 1.04 (4% zoomed in) and
1.10 (10% zoomed in), based on work that shows multi-
scale evaluation improves model performance [28].

The Expanded test-time augmentation policy produces
128 transformations for each test image, consisting of 8
binary transforms from the PIL library [24] and 12 con-
tinuous transforms. We include 10 evenly-spaced magni-
tudes of each continuous transformation. We base this set
of augmentations on AutoAugment [9] with two major dis-
tinctions: 1) We make each augmentation function deter-
ministic, to allow us to understand the specific relationship
between an augmentation and model predictions, and 2) we
do not consider combinations of these base transformations,
because enumerating trillions of combinations would be in-
feasible.

3.2. Overall results

Figure 2 plots the percentages of corruptions and correc-
tions introduced by the standard and expanded TTA poli-
cies on ImageNet and Flowers-102. The net effect of TTA
is nearly always positive. However, the number of incorrect
predictions introduced by the method represents a signifi-
cant percentage of the changes introduced. In the context
of ImageNet and ResNet-18, a little over one third of the
labels changed by the standard TTA policy are incorrect.

Figure 2 demonstrates that while one can expect a con-
sistent improvement in accuracy from TTA, the magnitude
of this improvement varies. We take a closer look at these
results in the next sections to understand why TTA changes
predictions to be correct to incorrect.

3.3. Biased Augmentation Sets

Averaging implicitly assumes that the augmentation set
has no influence on which predictions are corrected and
which are corrupted. Examining TTA’s effect on ImageNet,
we show that this is not the case. In particular, crops in-
troduce an inductive bias tied to the labeling scheme of the
dataset. Instances that demonstrate this bias can be broken
into three categories: hierarchical labels, multiple classes,
and similar labels (Figure 3).

Hierarchical labels include examples like (“plate”, “gua-
camole”) and (“table lamp”, “lamp shade”). TTA often bi-
ases a prediction in favor of the smaller or uncentered com-
ponent because of the crops included in the policy. Whether
TTA produces a corruption or a correction depends on the
assigned label. For example, Figure 3 depicts an image
where when the true label is “palace” and TTA predicts
“dome.”

Other changed predictions correspond to images
that contain objects from multiple classes such as
(“hook”,“cleaver”) and (“piano”, “trombone”) (Figure 3).
Recent work has noted this trait in ImageNet labels [4].
TTA produces incorrect labels by focusing on a different
part of the image. Again, TTA predictions favor smaller
objects because of crops.

The last subset of major changes corresponds to confus-
ing images, a product of similar labels in the dataset (e.g.,
dog breeds). This subset is largely comprised of animals
that are easily mistaken for one another. Crops and scales
often increase confusion between classes when the resulting
image emphasizes a non-distinguishing feature. For exam-
ple, consider the “Leatherback Turtle” image in Figure 3.
One way in which Leatherback Turtles differ from terrapins
is scale. As a result, the inclusion of a scaling augmentation
naturally confuses the two.

We see that the inductive bias arises because of a spe-
cific relationship between the augmentation set and the la-
bel space. Learning weights per augmentation allows us to



Figure 3: TTA changes can be grouped into three types:
hierarchical labels, multiple labels, and similar labels.
We include three examples from each type. TTA favors
smaller and uncentered labels.

identify and downweight augmentations that introduce in-
ductive bias. We see this in later experiments.

In practice, when using average aggregation, one should
ensure that the augmentations have minimal correlation
with the label space to avoid errors on images with hier-
archical or multiple labels. When designing TTA policies
for classes that are similar to one another, we should limit
the magnitude of the transformations and choose augmen-
tations that further distinguish confusing classes. For ex-
ample, a zoomed-in version of an “Egyptian Cat” is mis-
taken for a “Tabby” because of a focus on fur (Figure 3)
and smaller scales avoid such a mistake. TTAs that bene-
fit well-separated classes are likely different from those that
benefit often-confused classes.

3.4. Class-Dependent Invariances

The averaging aggregation strategy implicitly depends
upon the same augmentation policy performing well for all
input images. This is not the case when there are class-
dependent invariances, as we see in Flowers-102.

Flowers-102 differs from ImageNet in many respects,
such as dataset size, task difficulty, and class imbalance.
Most importantly, it does not exhibit hierarchical labels or
multiple labels. We show that crops have an intuitive effect
on images from Flowers-102, similar to what we see on Im-
ageNet. In particular, we show that crops can hurt flowers
with smaller distinguishing features (see Figure 4).

Consider images from the class most corrected by
TTA (“Rose”) and images from the class most corrupted
(“Bougainvillea”) in Figure 4. The original predictions of-
ten mistake a rose for another flower with a similar color
( “Globe Flower”, “Cyclamen”) or shape (“Sword Lily”,
“Canna Lily”). TTA may correct predictions for roses be-
cause crops maintain the petal texture, which differentiates
roses from other classes. By including crops and zoomed-in
portions of the image in the models’ prediction, the model
is better able to identify these textural differences.

The incorrect predictions introduced by TTA for
“Bougainvillea” are likely because of crops missing the cue
of the white stamen, a distinguishing characteristic for the
class. Moreover, crops may focus on a portion of the back-
ground (as with “Mallow”) and classify the image incor-
rectly.

In Figure 5, we compare images from two classes on
which ResNet-50 performs equally well, “Primula” and
“Sword Lily.” Interestingly, TTA improves performance
on only one, “Primula” and not the other. “Primula” ex-
hibits more consist texture, scale, and color than images
of the “Sword Lily.” This observation suggests that the
disparate effects of TTA could be caused by differences
in variation within classes. Horizontal flips and random
crops are not sufficient to account for the natural variation
in “Sword Lily” images, suggesting that this class would



Figure 4: Roses (top row) are most helped by TTA
in Flowers-102, while Bougainvilleas (bottom row) are
most harmed. We show four cases of rose predictions be-
ing improved by TTA, and four cases where bougainvillea
predictions are harmed. The white stamen of Bougainvil-
leas is both a distinguishing characteristic and prone to ex-
clusion from certain crops, resulting in corruptions.

be better served with a non-uniform weighting TTA pol-
icy. In this case, augmentations would be downweighted
for classes that do not exhibit the invariances TTA requires.

4. Method
In the previous section, we established cases in which

weighting augmentations differently might address the er-
rors introduced by TTA. We now present a simple learning
model that learn these weights. We assume three inputs to
our method:

1. A pretrained black-box classifier f : X → RC that
maps images to a vector of class probabilities. We use
X to denote the space of images on which the classifier
can operate and C to denote the number of classes. We
assume that f is not fully invariant with respect to the
augmentations.

2. A set of M augmentation functions, {am}Mm=1. Each
function am : X → X is a deterministic transform
designed to preserve class-relevant information while
modifying variables presumed to be class indepen-
dent such as image scale or color balance. We use
A(xi) ∈ RC to represent the matrix of M augmen-
tation predictions for input xi.

3. A validation set of N images X = {xi}Ni=1 and associ-
ated labels {yi}Ni=1, yi ∈ {1, . . . , C}. We assume this
set is representative of the test domain.

Given these inputs, our task is to learn an aggregation
function g : RM×C → RC . Function g takes a matrix
of C class logit predictions for M augmented versions of a
given image and uses them to produce one prediction in RC .

Figure 5: Equally difficult classes produce different TTA
behavior. The training data for a class that TTA benefits
(“Primula”, top) look qualitatively different from a class
TTA does not benefit (“Sword Lily”, bottom).

We then apply a softmax layer to obtain a vector of class
probabilities. Though g can be arbitrarily complex, such
as a multilayer neural network, we avoid adding significant
size or latency. Therefore, we only consider functions of the
form:

g(A(xi)) ≜
M∑

m=1

(Θ⊙A(xi))m,∗ (1)

where ⊙ denotes an element-wise product and Θ ∈ RM×C

is a matrix of trainable parameters. In words, g learns
a weight for each augmentation-class pair, and sums the
weighted predictions over the augmentations to produce a
final prediction. In scenarios where limited labeled training
data is available, one may opt for Θ ∈ RM , where Θ has
one weight for each augmentation:

g(A(xi)) ≜ ΘTA(xi). (2)

We refer to (1) as Class-Weighted TTA, or ClassTTA and
(2) as Augmentation-Weighted TTA, or AugTTA. We intend
for Θ to represent an augmentation’s importance to a fi-
nal prediction and so impose a constraint that its elements
must be nonnegative to favor interpretability of the result-
ing weights. We learn Θ by minimizing the cross-entropy
loss between the true labels yi and the output of g(A(xi))
using gradient descent. We choose between ClassTTA and
AugTTA using a small held-out portion of the validation set
and evaluate the performance of this method, in addition to
the individual parameterizations.



5. Experimental Evaluation
We evaluate the performance of our method across the

datasets and architectures laid out in Section 3.1. We im-
plemented our method in PyTorch [24] and employ an SGD
optimizer with a learning rate of .01, momentum of .9, and
weight decay of 1e-4. We apply projected gradient de-
scent by clipping the weights to zero after each update to
ensure the learned parameters are non-negative. We use
the same optimization parameters across experiments and
include them in the supplement. We train ClassTTA and
AugTTA for 30 epochs, choose which to deploy on each
dataset using a held-out validation set, and report our re-
sults on a held-out test set.

Datasets and Models We evaluate the performance of our
method across the datasets and architectures laid out in Sec-
tion 3.1. In addition, we evaluate on CIFAR-100 [18] and
STL-10 [7]. For each dataset, we follow the preprocessing
pipeline of [35] and pad each image by 4 pixels to accom-
modate crops that maintain the original image size (32x32
and 96x96 respectively). We use popular pretrained net-
works for STL-10 and CIFAR-100 (a 5-layer CNN and a
7-layer CNN, respectively), courtesy of [35].

Dataset Splits We divide the released test sets into train-
ing (40%), validation (10%) and test (50%) sets. We make
training and validation sets available to methods that make
use of labeled data. We make both the training and valida-
tion set available for methods that operate greedily, so that
each method makes use of the same amount of data.

Baselines We compare our method to four baselines:

• Raw: The original model’s predictions, with no TTA.

• Mean: Average logits across augmentations [19].

• Max: Maximum logit across augmentations [14].

• GPS: Greedy Policy Search [21]. GPS uses a param-
eter N, for the number of augmentations greedily in-
cluded in a policy. We set this parameter to 3, in line
with experiments reported in the original paper. GPS
makes use of all labeled data (both the training and
validation set).

While these baselines reflect existing work, they are not
the only ways one could aggregate test-time augmentation
predictions. Towards this end, we construct two other base-
lines: 1) learning to predict augmentation weights directly
from an image and 2) learning to predict a mixture of Mean
and Raw from an image. Our method dominates these con-
structed baselines in all experiments. We include these
results in the supplement, in case they are useful to re-
searchers pursuing similar ideas.

Statistical Significance We use a pairwise t-test to mea-
sure the statistical significance of our results and report stan-
dard deviations over 5 random subsamples of the test set.

5.1. Standard TTA Policy

Results As shown in Table 1, our method significantly
outperforms all baselines (p-value=2e-7). Moreover, our
method significantly outperforms the original model in all
8 comparisons (p-value=7e-10). Our method outperforms
other baselines in 42 of the 50 individual trials summarized
by Table 1. Tables including results for Top-5 classification
accuracy can be found in the supplement.

On STL-10, our method, Mean, and GPS perform com-
parably. While our method learns to ignore augmentations
that provide no additional information, the weighting for the
remaining augmentations is roughly equivalent to the aver-
age. This helps identify which augmentations need not be
included, thereby saving computation per image, but does
not significantly improve performance.

While Max demonstrates predictive power in identify-
ing out-of-distribution examples [14], the same cannot be
said for selecting which test-time augmentation lies clos-
est to the training distribution. This is likely caused by
the well-established phenomenon of miscalibration in neu-
ral networks [12].

Analysis The method consistently chooses ClassTTA on
Flowers-102 and AugTTA on ImageNet. This is likely be-
cause of the large number of classes in ImageNet (1000) and
the relatively few examples per class (25) to learn from. For
STL-10 and CIFAR-100, both AugTTA and ClassTTA con-
verge to similar augmentation weightings, which suggests
there are no significant class-dependent relationships with
the standard TTAs.

Given enough data, ClassTTA should provide a strict im-
provement over AugTTA. Therefore, these results imply that
ClassTTA is best applied to datasets with few classes and
sufficient labeled data. We include results for each parame-
terization in the appendix. In some cases, our method does
worse than either individual parameterization – this is be-
cause it makes use of a small hold-out validation set to de-
cide between the two. This suggests that in some cases, it
is more useful to select a parameterization based on domain
knowledge and learn a more performant set of weights.

The benefit of simple averaging (Mean) diminishes with
larger networks. We also find that the magnitude of TTA-
based improvement is correlated with the number of exam-
ples per class (r=.95, p-value=.04). This suggests that the
model relies on a large number of examples per class to
identify invariances during training, so that TTA can exploit
them during inference.

Our experiments also suggest that the combination of
TTA with smaller networks can outperform larger networks
without TTA and may be of use when deploying models in



Dataset Model Original Max Mean GPS Ours
Flowers102 MobileNetV2 90.28± 0.10 90.17± 0.25 90.47± 0.20 88.28± 0.17 92.62± 0.10

Flowers102 InceptionV3 89.28± 0.08 89.59± 0.15 90.07± 0.22 89.93± 0.16 91.16± 0.21

Flowers102 ResNet-18 89.78± 0.17 89.47± 0.11 90.21± 0.23 90.01± 0.22 91.02± 0.17

Flowers102 ResNet-50 91.72± 0.18 91.61± 0.08 91.96± 0.27 92.03± 0.09 92.02± 0.16

ImageNet MobileNetV2 71.38± 0.06 72.50± 0.13 72.69± 0.06 72.50± 0.11 72.43± 0.08

ImageNet InceptionV3 69.66± 0.12 71.8± 0.09 72.45± 0.13 71.57± 0.10 72.79± 0.02

ImageNet ResNet-18 69.37± 0.1 70.26± 0.13 71.02± 0.13 70.8± 0.1 71.06± 0.10

ImageNet ResNet-50 75.78± 0.08 76.62± 0.08 76.91± 0.09 76.73± 0.11 76.75± 0.14

CIFAR100 CNN-7 74.15± 0.18 75.00± 0.31 75.48± 0.11 75.45± 0.21 75.92± 0.20

STL10 CNN-5 77.92± 0.19 77.76± 0.22 78.58± 0.25 78.32± 0.17 78.52± 0.31

Table 1: TTA method performance (Top-1 Accuracy) given standard augmentation policy.

Dataset Model Original Max Mean GPS Ours
Flowers102 MobileNetV2 90.94± 0.16 86.85± 0.24 91.14± 0.08 91.34± 0.16 92.49± 0.20

Flowers102 InceptionV3 89.17± 0.33 87.89± 0.20 89.20± 0.23 89.43± 0.16 91.02± 0.26

Flowers102 ResNet-18 89.20± 0.10 83.30± 0.19 89.47± 0.09 89.90± 0.24 89.78± 0.16

Flowers102 ResNet-50 92.37± 0.13 89.39± 0.19 92.48± 0.11 92.57± 0.21 93.29± 0.21

ImageNet MobileNetV2 71.18± 0.05 67.65± 0.08 71.84± 0.12 72.49± 0.09 72.57± 0.09

ImageNet InceptionV3 69.51± 0.08 66.00± 0.13 70.85± 0.11 71.05± 0.08 71.02± 0.06

ImageNet ResNet-18 69.62± 0.15 66.56± 0.12 70.11± 0.13 70.91± 0.05 70.89± 0.04

ImageNet ResNet-50 75.53± 0.06 71.99± 0.15 75.87± 0.17 76.12± 0.08 76.36± 0.10

CIFAR100 CNN-7 74.37± 0.12 63.90± 0.22 73.41± 0.13 75.07± 0.32 73.18± 0.21

STL10 CNN-5 78.04± 0.18 74.77± 0.12 79.02± 0.21 78.81± 0.27 79.27± 0.22

Table 2: TTA method performance (Top-1 Accuracy) given expanded augmentation policy.

space-constrained settings. This can be seen in the higher
performance of ClassTTA applied to MobileNetV2 (∼3.4
million parameters) compared to the original ResNet-50
model (∼23 million parameters) on Flowers-102.

5.2. Expanded TTA Policy

Results Table 2 presents our results with a larger set of
augmentations. Our method significantly outperforms the
traditional averaging (p-value=2e-7). The results show that
we outperform GPS (p-value=5e-7), exceeding its perfor-
mance on 34 of the 50 trials. Once more, our method
favors ClassTTA for Flowers-102 and AugTTA for Ima-
geNet. Results in the supplement show that ClassTTA
yields larger improvement for Flowers-102 and moderate
improvements on ImageNet. ClassTTA significantly outper-
forms the original model on all datasets (p-value=1e-6). In
the case of MobileNetV2 and ImageNet, our method un-

derperforms the best performing baseline (Mean) because
it selects ClassTTA over AugTTA using the validation set,
when AugTTA performs comparably to Mean.

Analysis Interestingly, many of the TTAs considered in
this policy were not included in any model’s train-time aug-
mentation policy. Each model was trained with only two
train-time augmentations: flips and crops. This suggests
that useful test-time augmentations need not be included
during training and may reflect dataset-specific invariances.

The tradeoff in using an expanded set of TTAs is the in-
creased cost at inference time. Each additional augmenta-
tion increases the batch size that must be passed through
the network. This cost of an expanded set of augmentations
may not be justified according to our results: the accuracy
of ClassTTA using a standard set of TTAs is comparable to
accuracy of ClassTTA using an expanded set of TTAs. This



Figure 6: Augmentations with higher scale parameters
are weighted lower by our method. Learned augmenta-
tion weights for each of the 30 augmentations included in
the standard policy. Higher scales are weighted lower for
both datasets.

may be because the standard set of TTAs overlaps with the
augmentations used during training. Further investigation is
necessary to determine the relationship between train-time
and test-time augmentation policies.

5.3. Learned Weights

The performance of AugTTA and ClassTTA demonstrate
that there are cases where taking the mean of augmentation
predictions is not optimal.

Across all architectures on ImageNet, our method learns
to exclude the augmentations that include a 10% scale from
the final prediction (Figure 6). This reflects our qualitative
analysis suggesting that scales can introduce an undesirable
inductive bias in the final predictions (Figure 3).

While TTA performance given the expanded policy does
not outperform TTA with the standard policy, the learned
weights tell us more about a broader set of reasonable
test-time augmentations for these datasets. For example,
crop, translation, and blur augmentations are consistently
weighted highly in the expanded policy setting. On the
other hand, weights for contrasts, cut-outs, shearing, and
brightness augmentations are consistently learned to be 0.

Similarly, while ClassTTA frequently underperforms
AugTTA, the class-specific weights offer insight into the
training images for each class. Specifically, classes with
higher variance in learned augmentation weights exhibit
higher input variation (Figure 7).

Supporting plots for additional architectures and aug-
mentation comparisons and the expanded test-time augmen-
tation policy are included in the appendix. In each case,
augmentations with higher scale parameters (corresponding
to more zoomed-in images) are weighted lower.

5.4. Computational Cost

The benefit of TTA comes at the cost of repeated infer-
ence. The computational cost of TTA is offset by 1) poten-

Figure 7: Classes with higher variation in learned aug-
mentation weights exhibit higher input variation. We
show examples from two classes with the lowest (left) and
highest (right) variation in augmentation weights (using
ResNet-50, Flowers-102, Standard TTA policy).

tial for batched inference, thereby reducing inference time
and 2) the ease-of-use compared other methods for improv-
ing model accuracy (e.g., model retraining).

Implemented naively, the cost scales linearly with the
magnitude of the TTA policy. However, one can also use
the per-augmentation weights to decide which augmenta-
tions to generate. For ResNet-50 on ImageNet, AugTTA
learns non-zero weights for only 37 of the 128 augmen-
tations in Expanded TTA policy (28%). On Flowers-102,
only 20 (16%) have non-zero weights, demonstrating that
one can also use this method to save computation.

6. Discussion

In this paper, we investigate when test-time augmen-
tation works, and when it does not. Through an analy-
sis of two widely-used datasets—ImageNet and Flowers-
102—we show that the predictions changed by TTA reveal
how weighting augmentations differently can be useful. We
build on these insights to construct a method that accounts
for these factors and show that it outperforms existing TTA
approaches across 4 datasets and 6 models. Analysis of the
learned weights highlights useful test-time augmentations
that lie outside the standard policy of flips, crops, and scales.

The insights shared in this study can improve the field’s
understanding of how TTA changes model decisions. This
work opens promising areas for future work:

• Targeted train-time augmentation policies: TTA ex-
ploits a model’s lack of invariance to certain trans-
forms. A model could instead learn this invariance, as
recent work has shown [3]. The success of TTA could
highlight when and where there is a greater need for
train-time augmentation and can inform a set of class-
specific transforms to include during training.

• Learned augmentations: Learning the weights for each
augmentation is only one way to build on the insights
presented here. One could instead learn a set of aug-
mentations. Past work on TTA considers common aug-
mentations but it is worth considering a broader class
of augmentations.
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