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TTA produces more accurate and robust predictions
than the original model without retraining

Two choices:
1. Selecting augmentations
2. Aggregating the resulting predictions

Common augmentations include
flips, crops, and scales, and
predictions are typically
aggregated via a simple
average. |
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TTA Is widely applied.
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TTA Is widely applied.
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TTA Is widely applied.
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Standard approaches to TTA work
consistently improve network performance.

ImageNet + Standard Test-Time Augmentation
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Standard approaches to TTA change many
predictions from correct to incorrect.

ImageNet + Standard Test-Time Augmentation
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Characterize the errors Present anew | TA
Nntroducead by [ 1A method that addresses
these shortcomings.
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Datasets we considered:

ImageNet: 1000 classes, 1.2 million images
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ImageNet: 1000 classes, 1.2 million images
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ImageNet
Standard Test-Time Augmentation
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Understanding why corruptions occur




Zooming In on iImages with multiple classes
favors classes that appear smaller.

Test-Time Augmentations of Original Image
(Flips, Crops, and Scales)
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1 TA can also benefit classes differently because of
class-dependent variation.

[Primula] Orig: 65.75%, TTA: 69.86% [Sword Lily] Orig: 65.45%, TTA: 62.72%
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' Class-specific and dataset-specific attributes
S can affect the performance of traditional T TA.



Key idea: Learn augmentation-specific
weights for aggregating predictions.
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Key idea: Learn augmentation-specific
weights for aggregating predictions.

We assume three inputs:

Black box classifier Augmentation policy Labeled set of images
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Key idea: Learn augmentation-specific
weights for aggregating predictions.

Two models:
1) Learn a weight parameter for each augmentation
2) Learn a weight parameter for each augmentation-class pair
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weights for aggregating predictions.

Two models:
1) Learn a weight parameter for each augmentation
2) Learn a weight parameter for each augmentation-class pair

AugTTA ClassTTA
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Weights for each
augmentation Weights for each

class-augmentation pair
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Key idea: Learn augmentation-specific



Our method in three steps:

Split the labeled data
into data for training the
models, and data for
deciding which model
to use.




Our method in three steps:

Split the labeled data Learn the parameters for
into data for training the AugTTA and ClassTTA using
models, and data for projected gradient descent
deciding which model to ensure learned weights
to use. are non-negative.

\




Our method in three steps:

Split the labeled data Learn the parameters for
into data for training the AugTTA and ClassTTA using

models, and data for projected gradient descent

deciding which model to ensure learned weights

to use. are non-negative.

Choose AugTTA or
ClassTTA based on

performance on the
held-out data.
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classification accuracy than existing work.
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Our method produces higher Top-1
classification accuracy than existing work.

Standard TTA Policy.

Dataset Model Original Max Mean GPS Ours
Flowers102 MobileNetV2 90.28 =0.10 90.174+0.25 90.474+0.20 88.28+0.17 92.62 £0.10
Flowers102 InceptionV3  89.28+0.08 89.59+0.15 90.07+0.22 89.93+0.16 91.16 £0.21
Flowers102 ResNet-18 89.78 £0.17 8947 +0.11 90.214+0.23 90.01 £0.22 91.02+0.17
Flowers102 ResNet-50 91.724+0.18 91.61+0.08 91.96+0.27 92.03+0.09 92.02+0.16
ImageNet MobileNetV2 71.38+:0.06 72.50+£0.13 72.694+0.06 72.5010.11 72.43 = 0.08
ImageNet InceptionV3  69.66 =0.12 71.8+£0.09 72.45+0.13 71.57+0.10 72.79 4+0.02
ImageNet ResNet-18 69.37 £ 0.1 70.26 £0.13 71.02+0.13 70.8+£0.1 71.06 = 0.10
ImageNet ResNet-50 75.78 £0.08 76.624+0.08 76.91+0.09 76.734+0.11 76.75+0.14
CIFAR100 CNN-7 74.15£0.18 75.004+£0.31 75.48+0.11 7545+0.21 75.92+0.20
STL10 CNN-5 7792019 77761022 78581+:0.25 7832+0.17 78.52+0.31
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TTA + smaller networks can exceed original
performance of larger networks.

Standard TTA Policy.

Dataset Model Original Max Mean GPS Ours
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Flowers102 ResNet-18 89.78 £0.17 8947 +0.11 90.214+0.23 90.01 £0.22 91.02+0.17
Flowers102 ResNet-50 91.724+0.18 91.614+0.08 91.964+0.27 92.03+0.09 92.02+0.16
ImageNet MobileNetV2 71.38+:0.06 72.50+£0.13 72.694+0.06 72.5010.11 72.43 = 0.08
ImageNet InceptionV3  69.66 =0.12 71.8+£0.09 72.45+0.13 71.57+0.10 72.79 4+0.02
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TTA + smaller networks can exceed original
performance of larger networks.

Standard TTA Policy.

Dataset Model Original Max Mean GPS Ours
Flowers102 MobileNetV2 90.28 =0.10 90.174+0.25 90.474+0.20 88.28+0.17 92.62 +0.10
Flowers102 InceptionV3  89.28 +0.08 89.59+0.15 90.07+0.22 89.93+0.16 91.16 £0.21
Flowers102 ResNet-18 89.78 £0.17  89.47+0.11 90.21+0.23 90.01 £0.22 91.02+0.17
Flowers102 ResNet-50 91.724+0.18 91.614+0.08 91.964+0.27 92.03+0.09 92.02+0.16
ImageNet MobileNetV2 71.38+:0.06 72.50+£0.13 72.694+0.06 72.5010.11 72.43 4+ 0.08
ImageNet InceptionV3  69.66 =0.12 71.8+£0.09 72.45+0.13 71.57+0.10 72.79 4+0.02
ImageNet ResNet-18 69.37 £ 0.1 70.26 £0.13 71.02+0.13 70.8+£0.1 71.06 = 0.10
ImageNet ResNet-50 75.78 £0.08 76.624+0.08 76.91+0.09 76.734+0.11 76.75+0.14
CIFAR100 CNN-7 74.15+0.18 75.00+:0.31 75.48+0.11 7545+0.21 75.92+0.20
STL10 CNN-5 7792019 77.761+0.22 7858+:0.25 7832+0.17 78.52+0.31
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The weights learned by ClassTTA reflect
variation in the training data.

Low Variance in Augmentation Weights High Variance in Augmentation Weights
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Our method improves classification accuracy and is
nearly free in terms of model size, training time,
and Implementation burden.

The learned weights shed light on 1) dataset-specific
and class-specific robustness to specific

augmentations and 2) which classes exhibit higher
variation in the training data.




In summary:

* Class-specific and dataset-specific attributes have systematic
effects on the performance of common approaches to TTA.

*We share insights on when TTA is likely to be successful and which
classes are negatively affected by the use of TTA.

*We develop a method that increases the classification accuracy of a
pre-trained network.

Visit our poster to learn more!

(or email me at divyas@mit.edu)
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