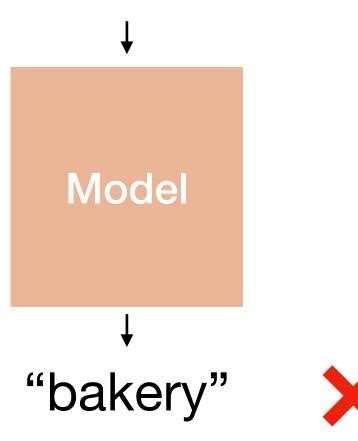
Better Aggregation in Test-Time Augmentation Divya Shanmugam, Davis Blalock, Guha Balakrishnan, John Guttag

International Conference on Computer Vision (ICCV), 2021

TTA is the aggregation of predictions across transformations of an image.

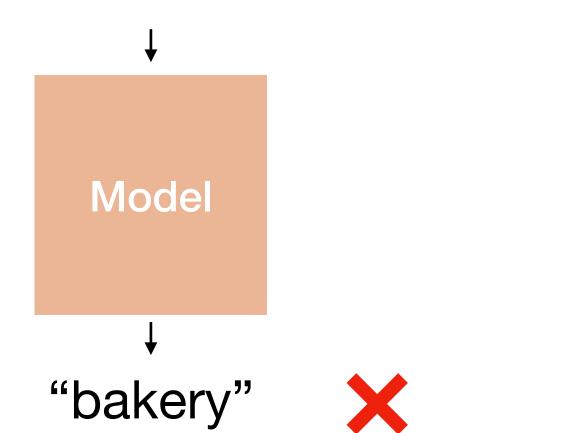
Traditionally:

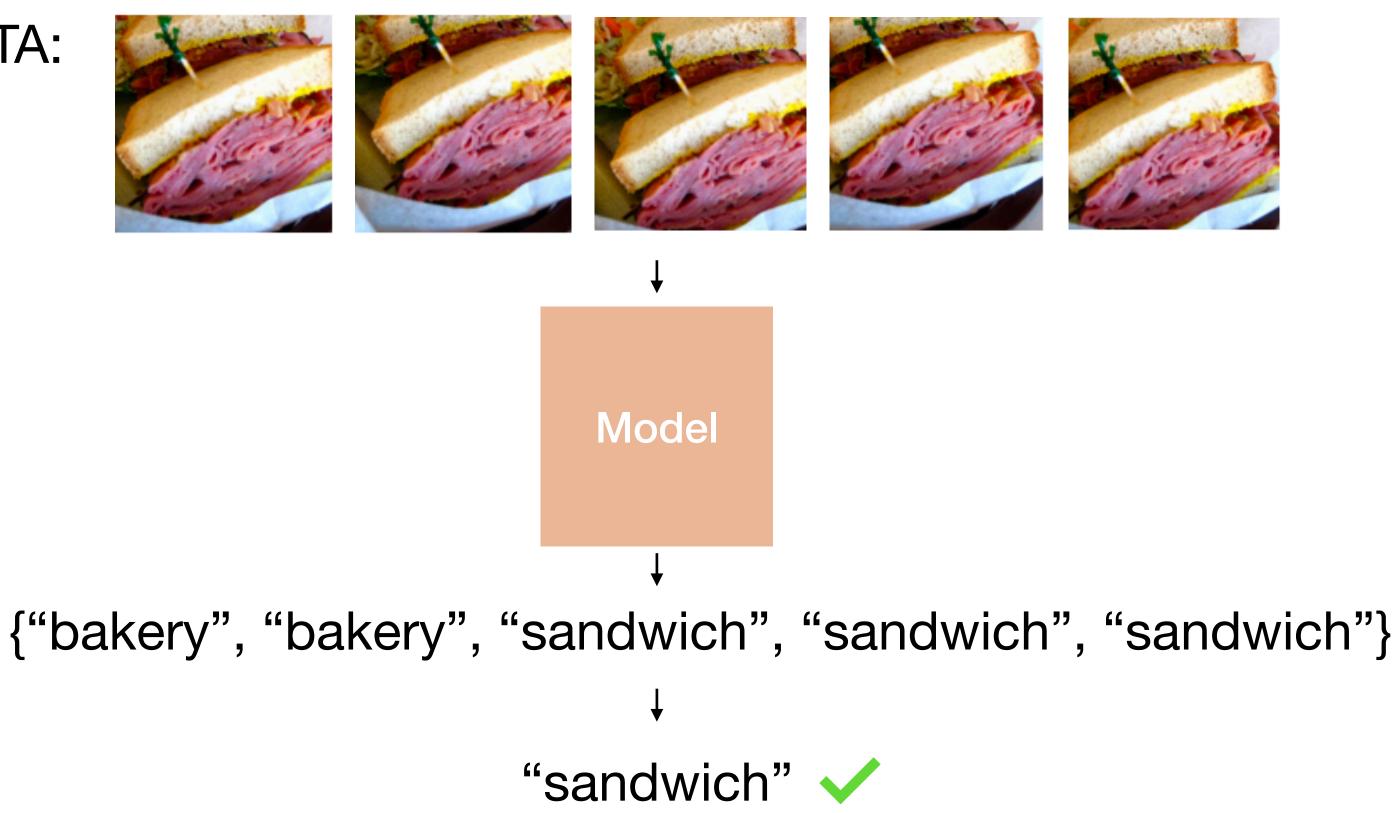


TTA is the aggregation of predictions across transformations of an image.

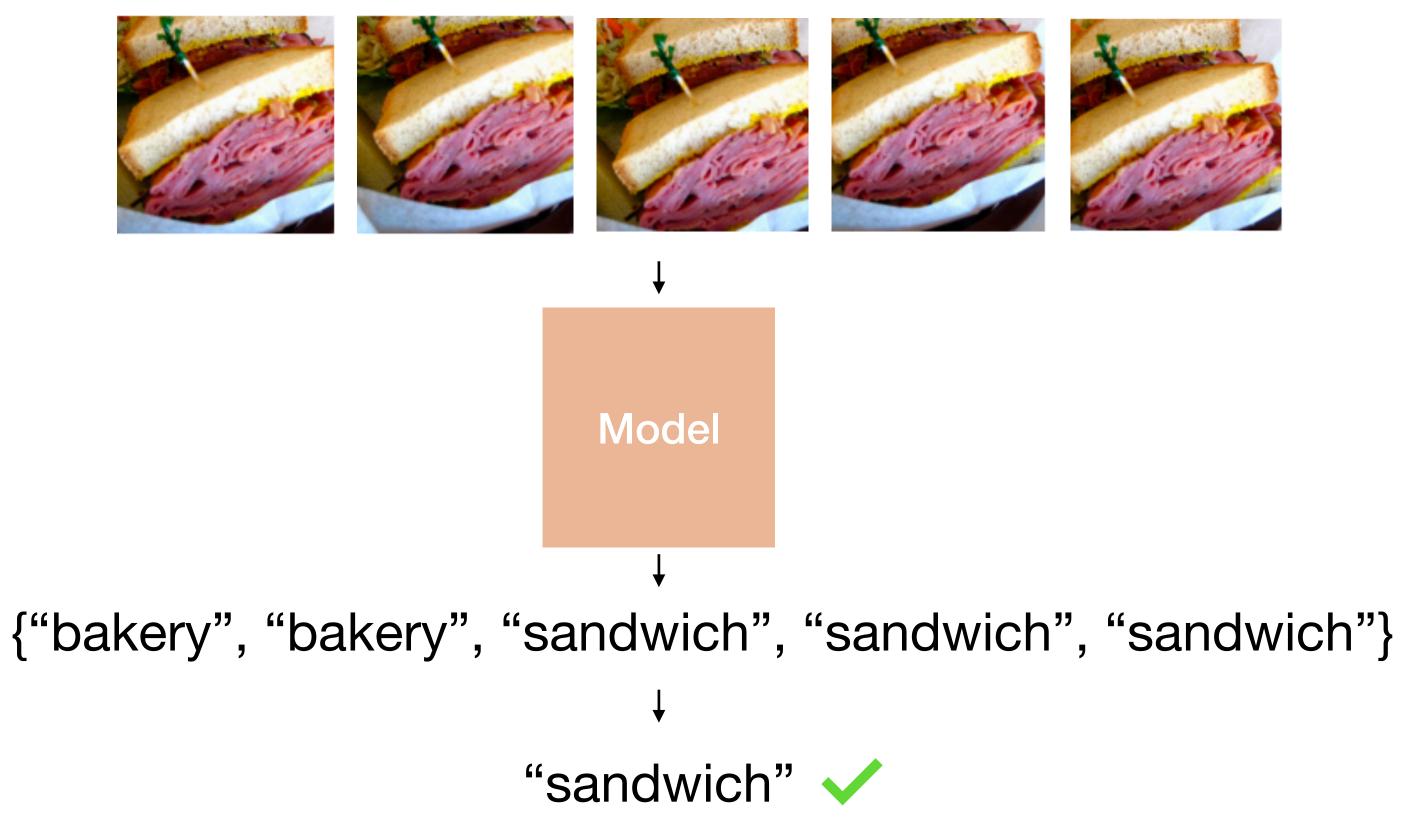
Traditionally:

With TTA:





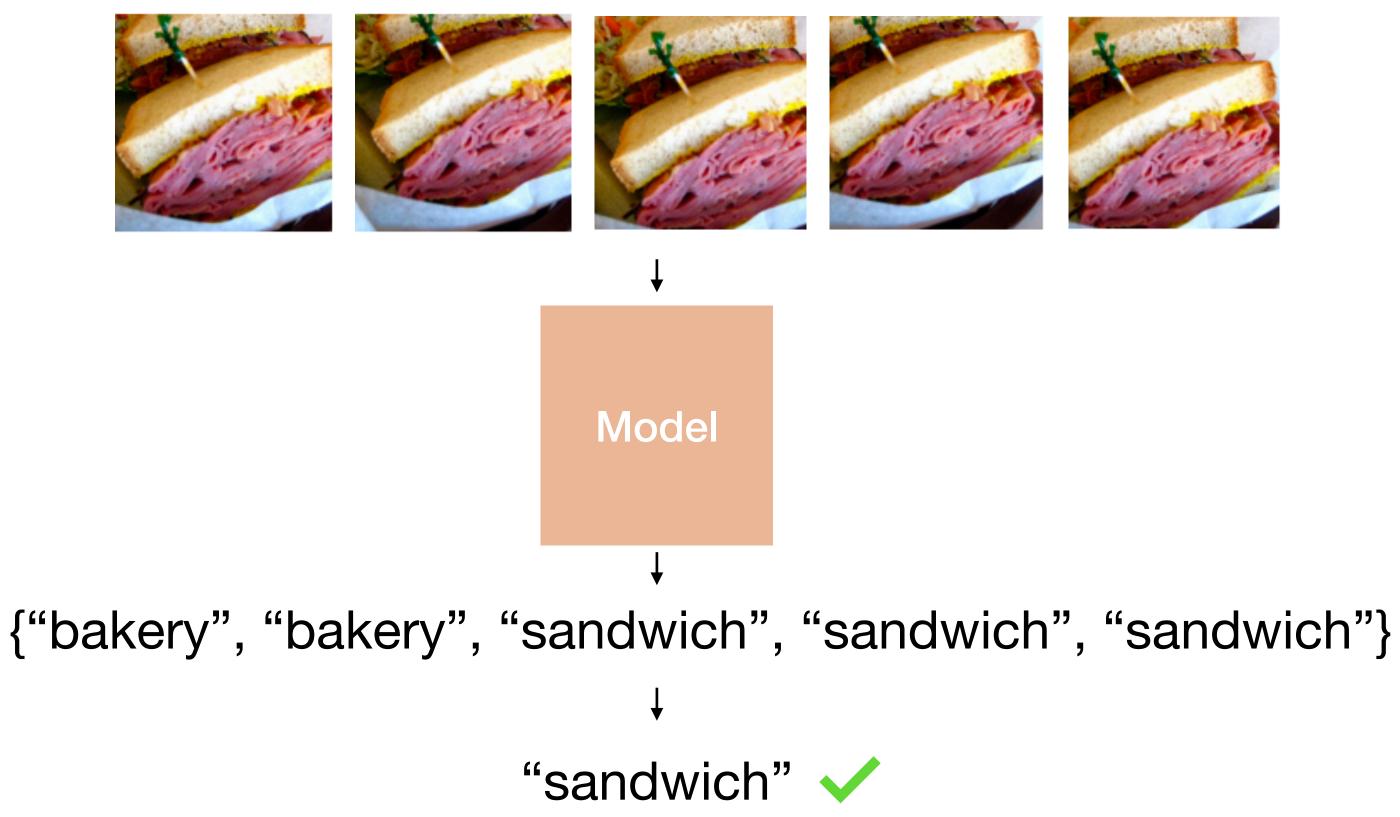
TTA produces more accurate and robust predictions than the original model without retraining



TTA produces more accurate and robust predictions than the original model without retraining

Two choices:

- 1. Selecting augmentations
- 2. Aggregating the resulting predictions

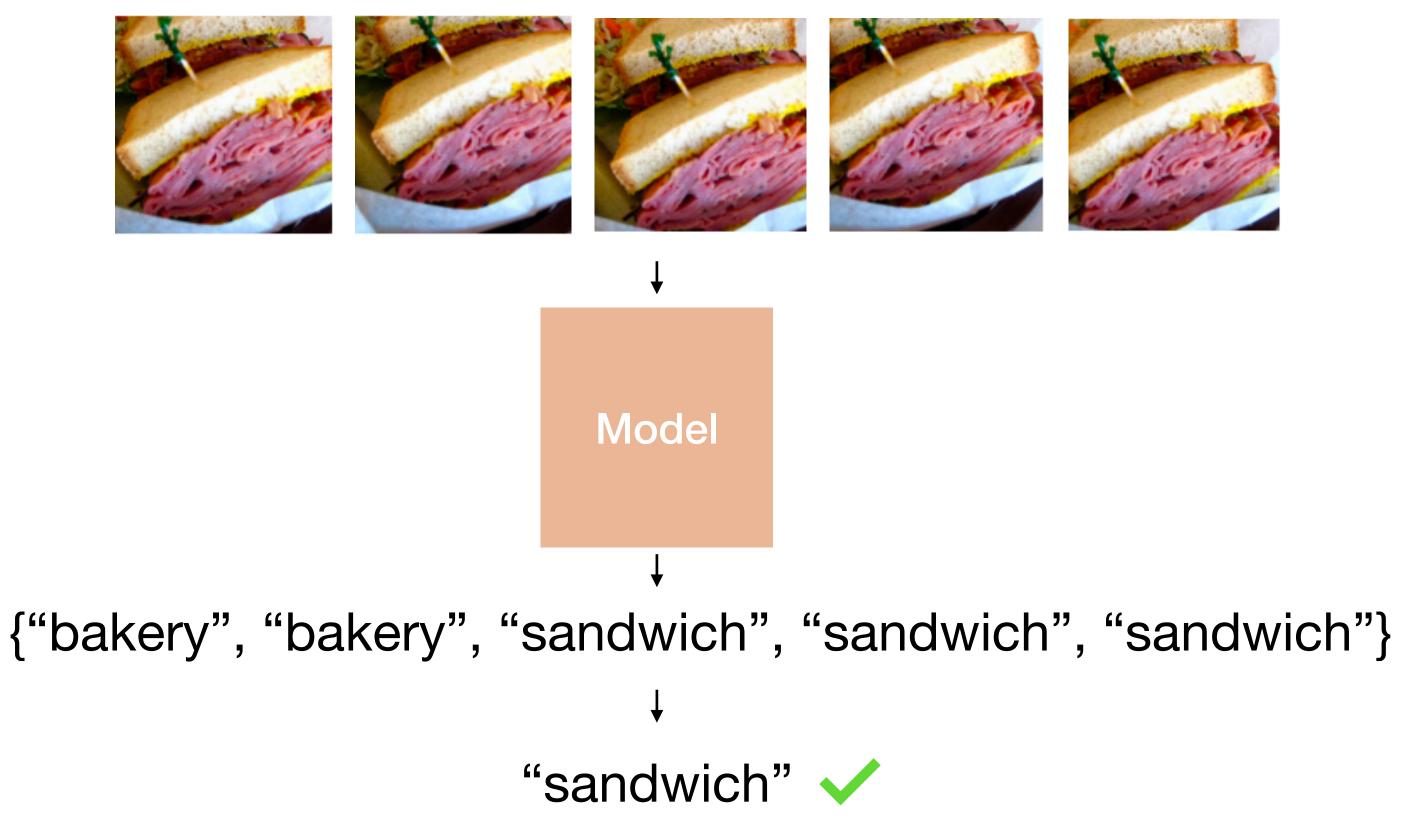


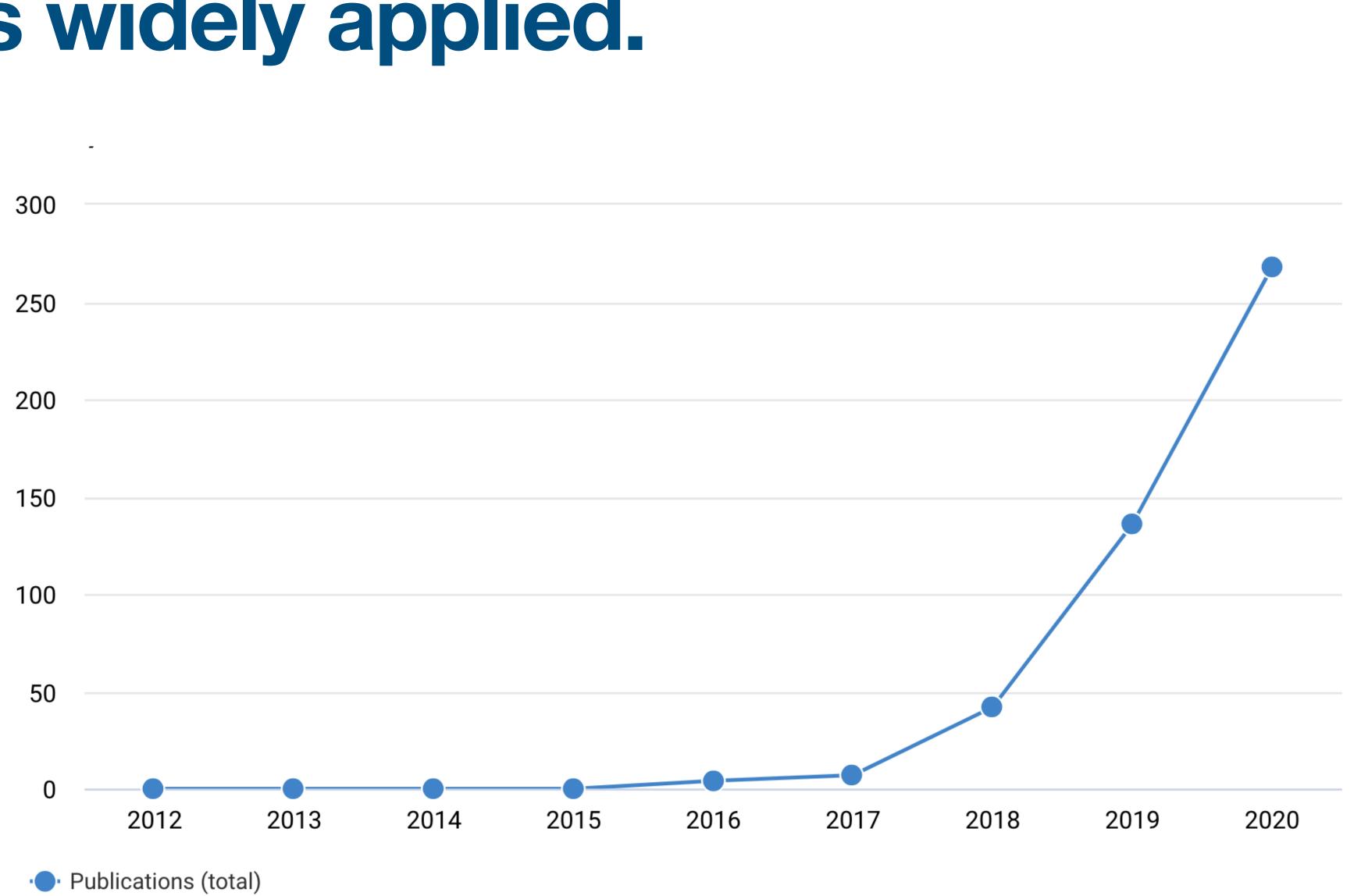
TTA produces more accurate and robust predictions than the original model without retraining

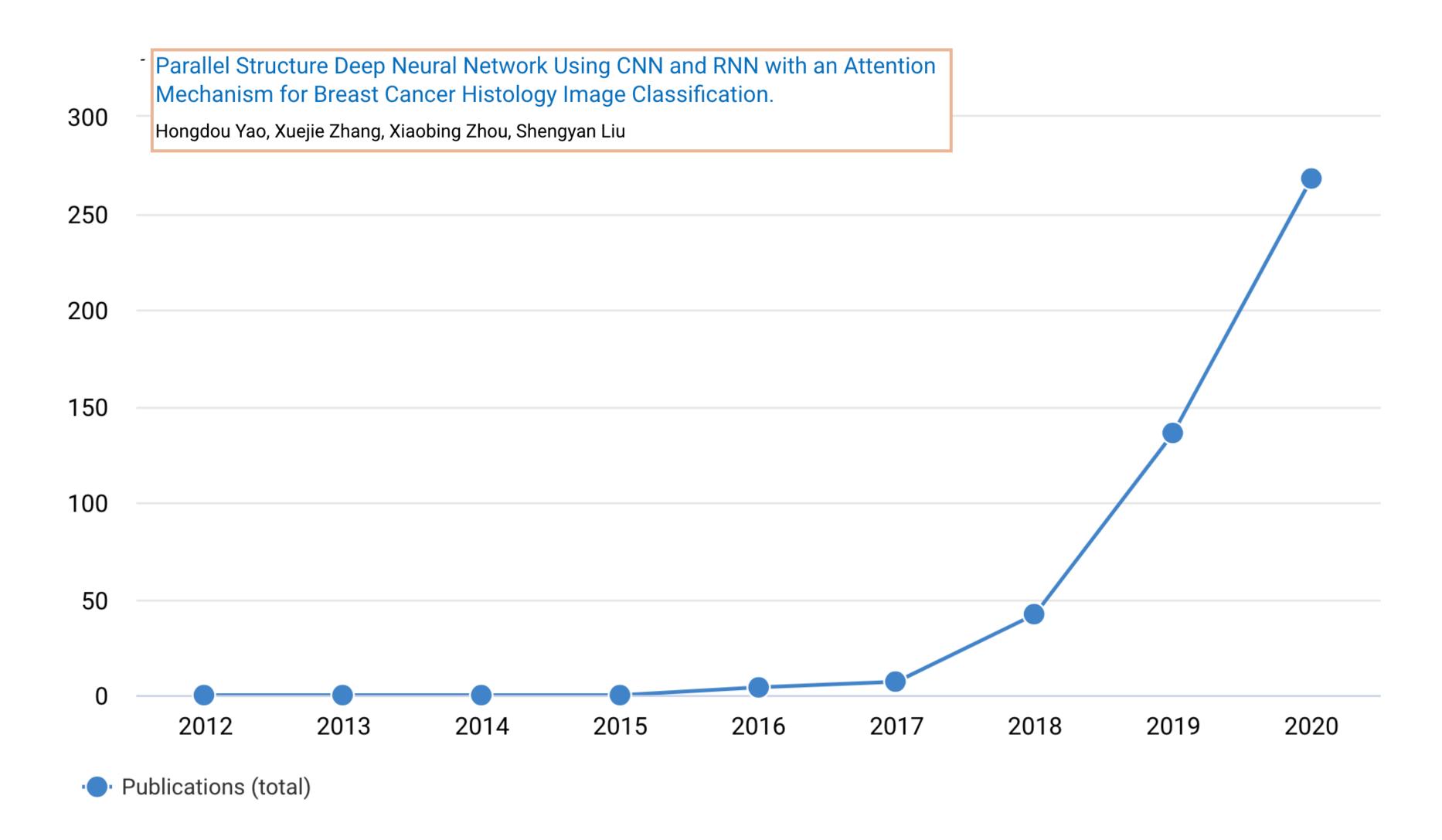
Two choices:

- 1. Selecting augmentations
- 2. Aggregating the resulting predictions

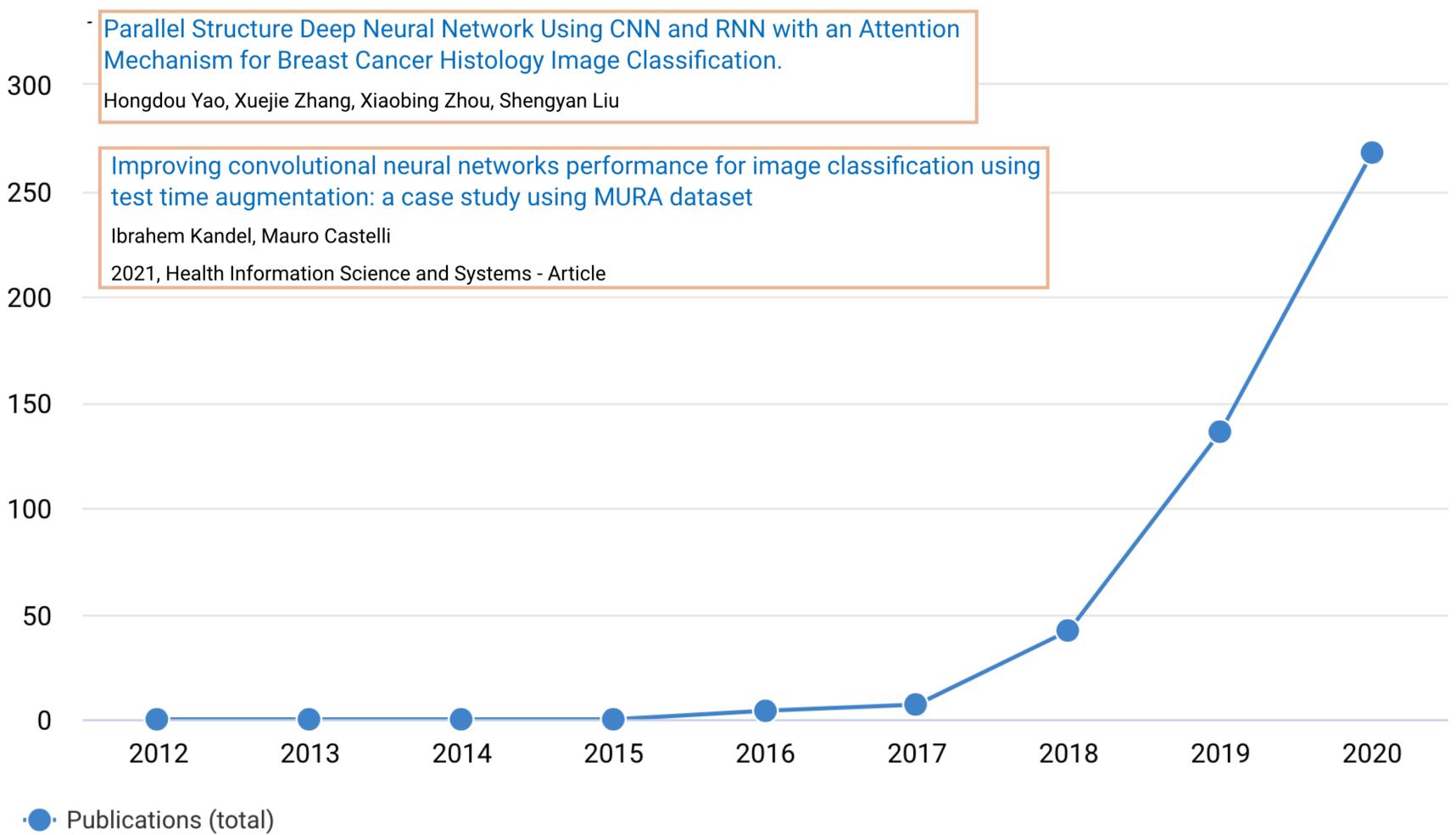
Common augmentations include flips, crops, and scales, and predictions are typically aggregated via a simple average.



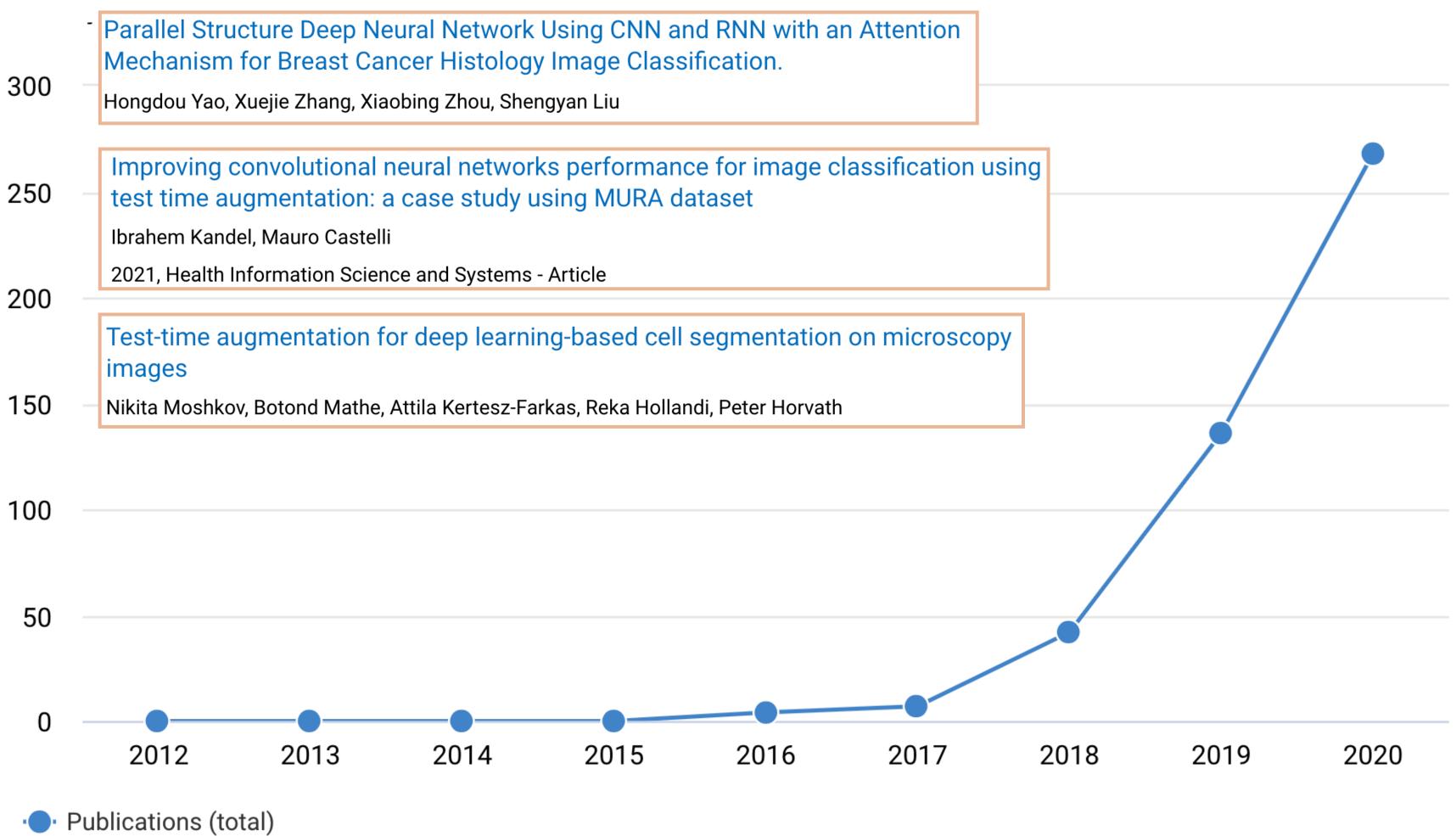




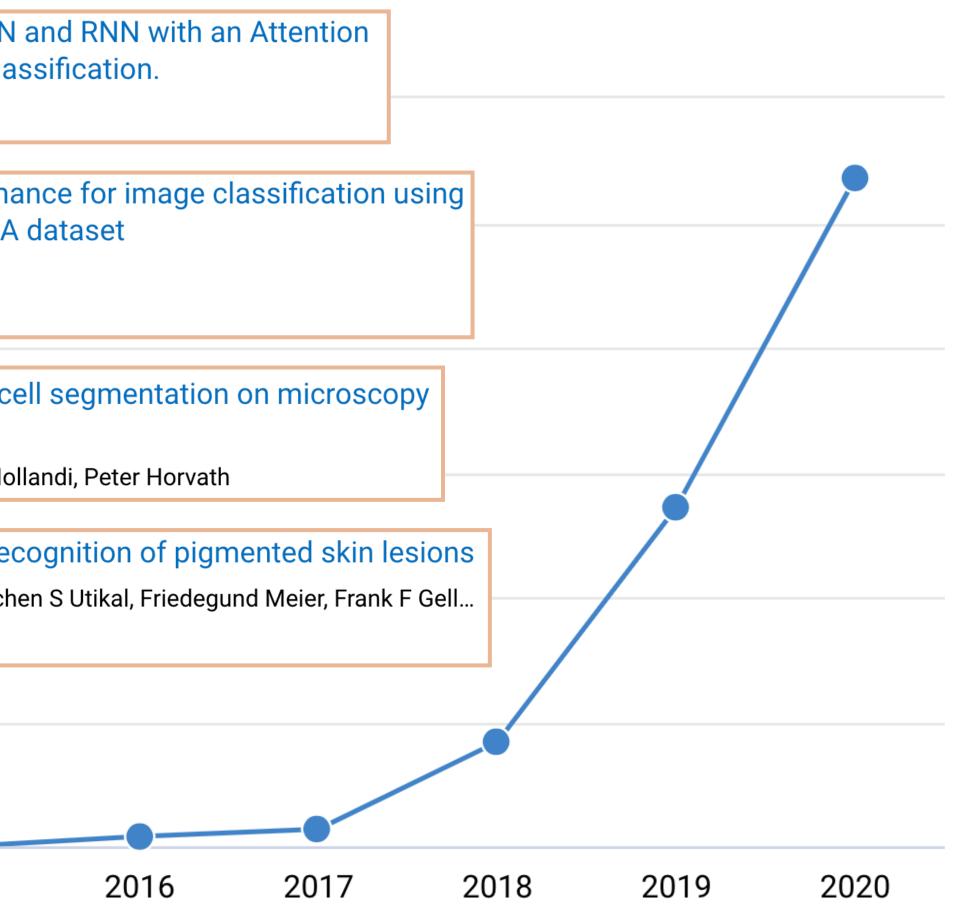
- 300	Parallel Structure Deep Neural Network Using CNN Mechanism for Breast Cancer Histology Image Cla
	Hongdou Yao, Xuejie Zhang, Xiaobing Zhou, Shengyan Liu
250 -	Improving convolutional neural networks perform test time augmentation: a case study using MURA
	Ibrahem Kandel, Mauro Castelli
	2021, Health Information Science and Systems - Article
200 —	



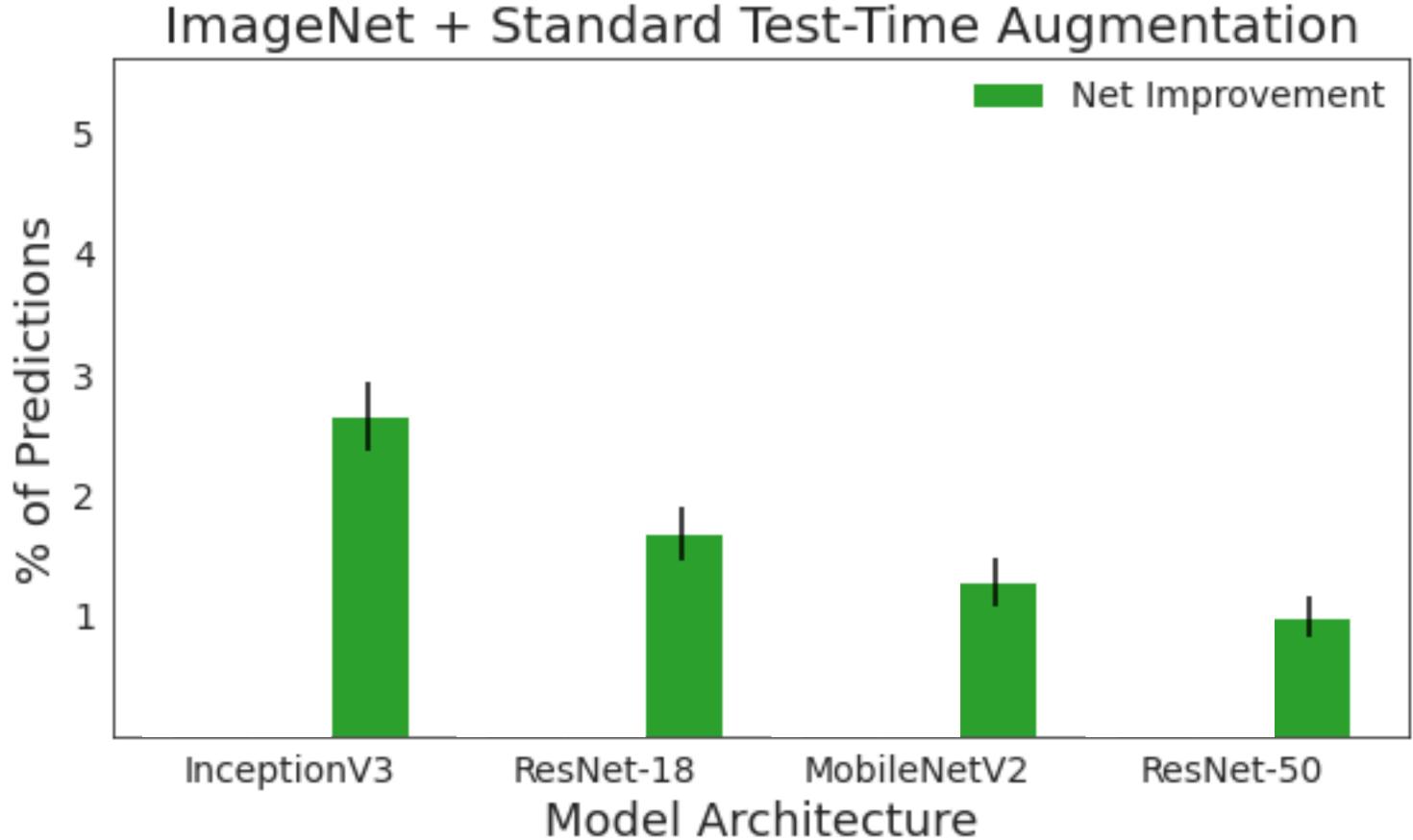
	Parallel Structure Deep Neural Network Using CNN Mechanism for Breast Cancer Histology Image Cla						
300 -	Hongdou Yao, Xuejie Zhang, Xiaobing Zhou, Shengyan Liu						
250 -	Improving convolutional neural networks perform test time augmentation: a case study using MURA						
	Ibrahem Kandel, Mauro Castelli						
	2021, Health Information Science and Systems - Article						
200 —							
	Test-time augmentation for deep learning-based c images						
150 —	Nikita Moshkov, Botond Mathe, Attila Kertesz-Farkas, Reka Ho						



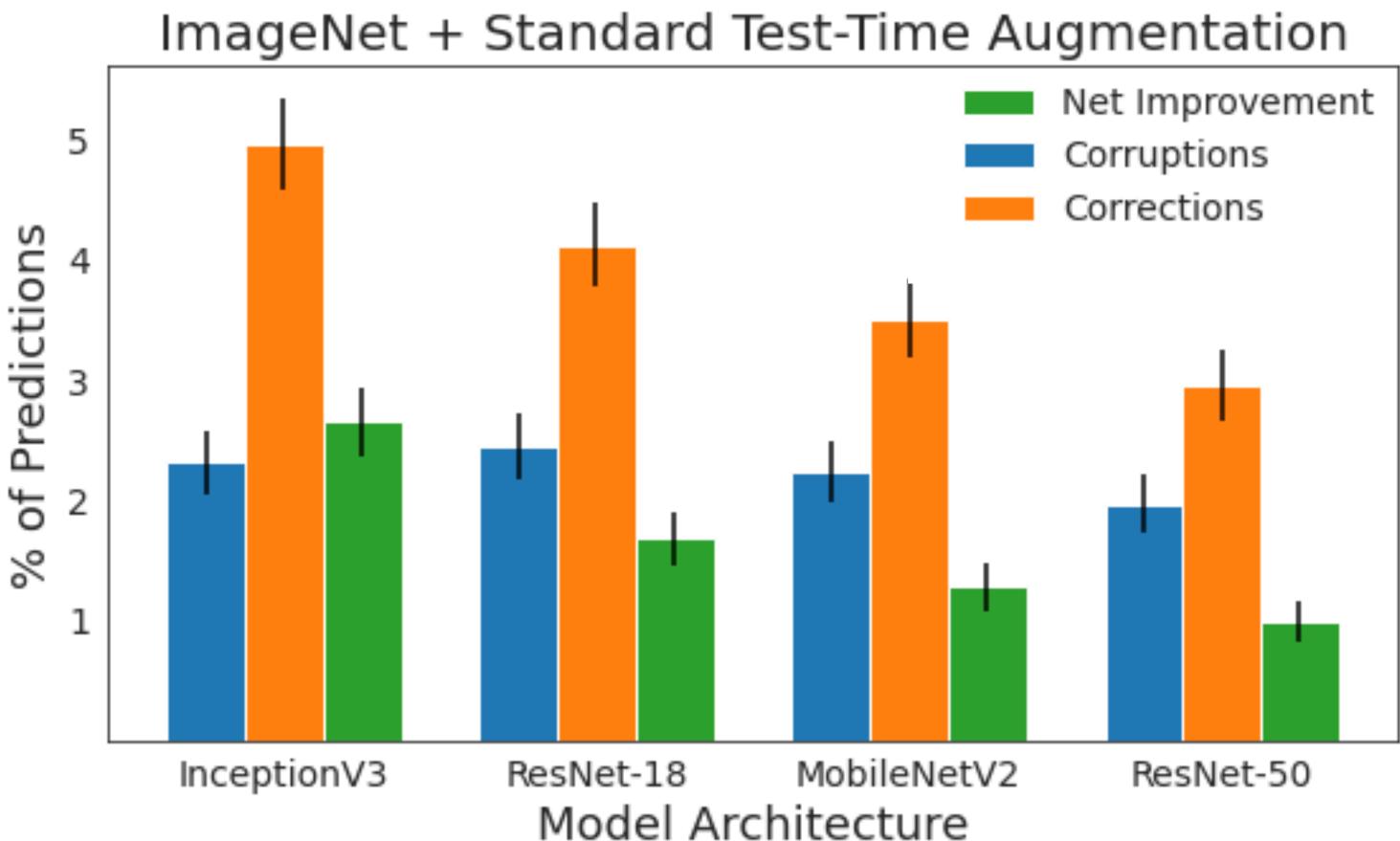
-	Parallel Structure Deep Neural Network Using CNN Mechanism for Breast Cancer Histology Image Cla
300 -	Hongdou Yao, Xuejie Zhang, Xiaobing Zhou, Shengyan Liu
	Improving convolutional neural networks perform
250 —	test time augmentation: a case study using MUR/
	Ibrahem Kandel, Mauro Castelli
200 -	2021, Health Information Science and Systems - Article
200	Test-time augmentation for deep learning-based of images
150 —	Nikita Moshkov, Botond Mathe, Attila Kertesz-Farkas, Reka Ho
100	Robustness of convolutional neural networks in re
100 —	Roman C Maron, Sarah Haggenmüller, Christof von Kalle, Joc 2021, European Journal of Cancer - Article
50	
0 —	
	2012 2013 2014 2015
·●· Pu	olications (total)



Standard approaches to TTA work consistently improve network performance.



Standard approaches to TTA change many predictions from correct to incorrect.



Our plan

Characterize the errors introduced by TTA.

Present a new TTA method that addresses these shortcomings.

Datasets we considered:

ImageNet: 1000 classes, 1.2 million images

Datasets we considered:

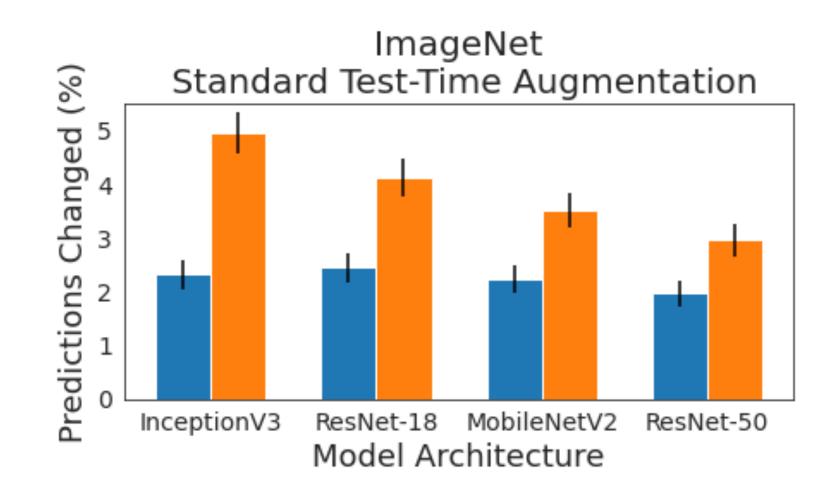
ImageNet: 1000 classes, 1.2 million images

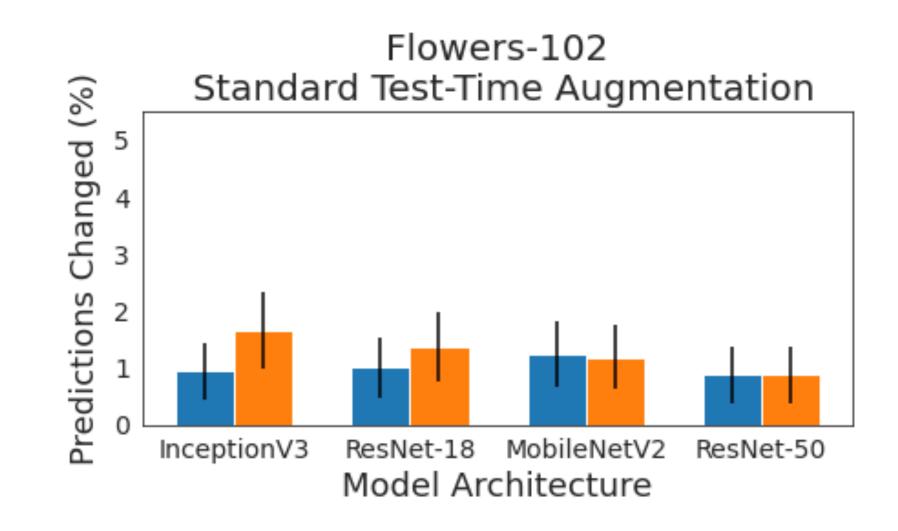
Flowers-102: 102 classes, 1020 images

Datasets we considered:

ImageNet: 1000 classes, 1.2 million images

Flowers-102: 102 classes, 1020 images

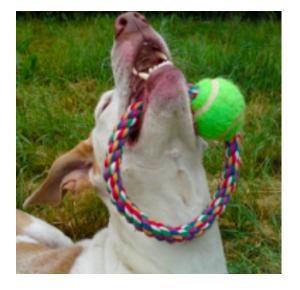




Understanding why corruptions occur

True Label: Ibizan Hound

Zooming in on images with **multiple classes** favors classes that appear smaller.



True Label: Ibizan Hound

Test-Time Augmentations of Original Image (Flips, Crops, and Scales)

TTA Label: Tennis Ball

TTA can also benefit classes differently because of **class-dependent variation.**

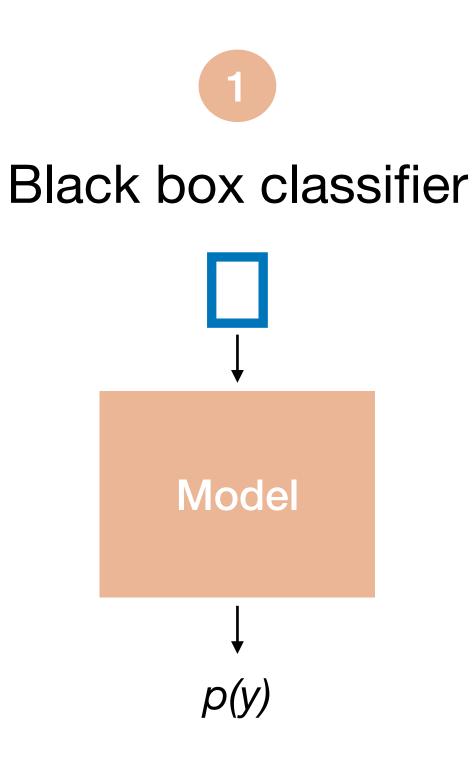
[Primula] Orig: 65.75%, TTA: 69.86%

[Sword Lily] Orig: 65.45%,TTA: 62.72%

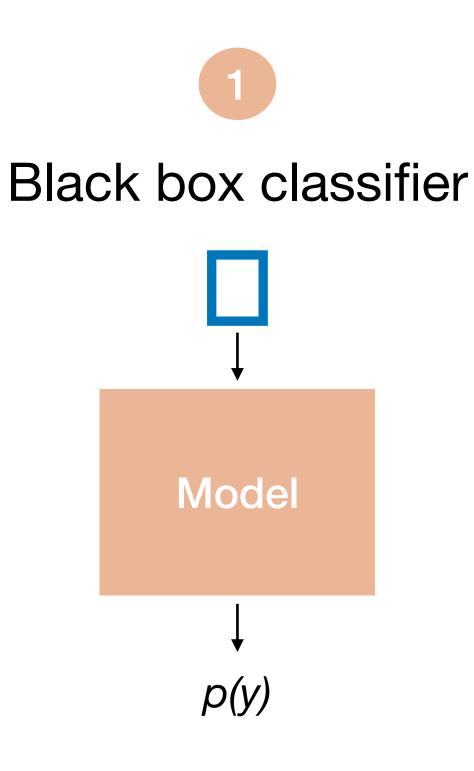
Class-specific and dataset-specific attributes can affect the performance of traditional TTA.

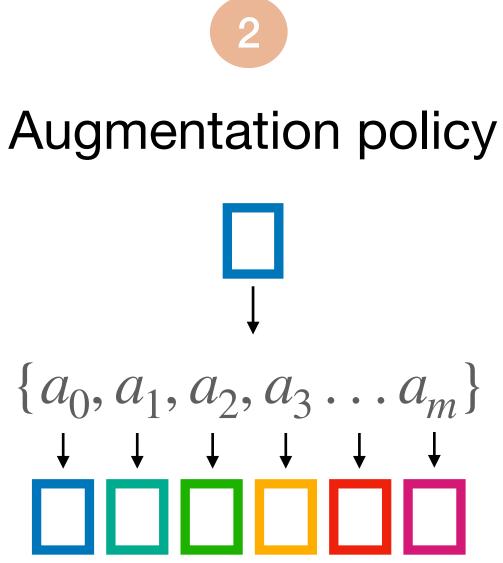
We assume three inputs:

We assume three inputs:

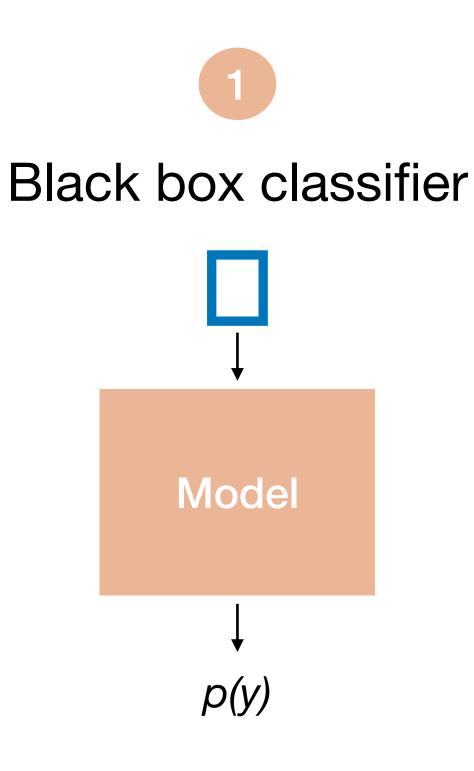


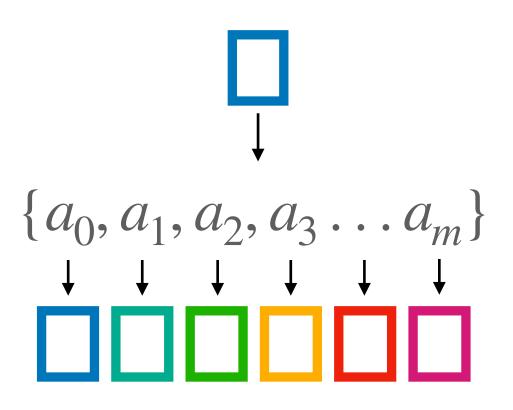
We assume three inputs:

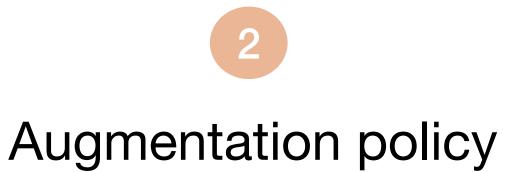




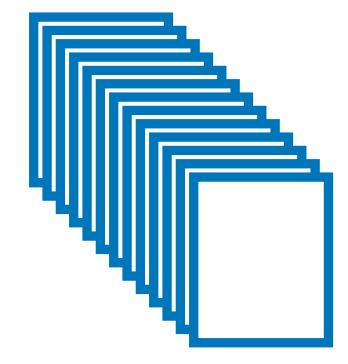
We assume three inputs:







Labeled set of images



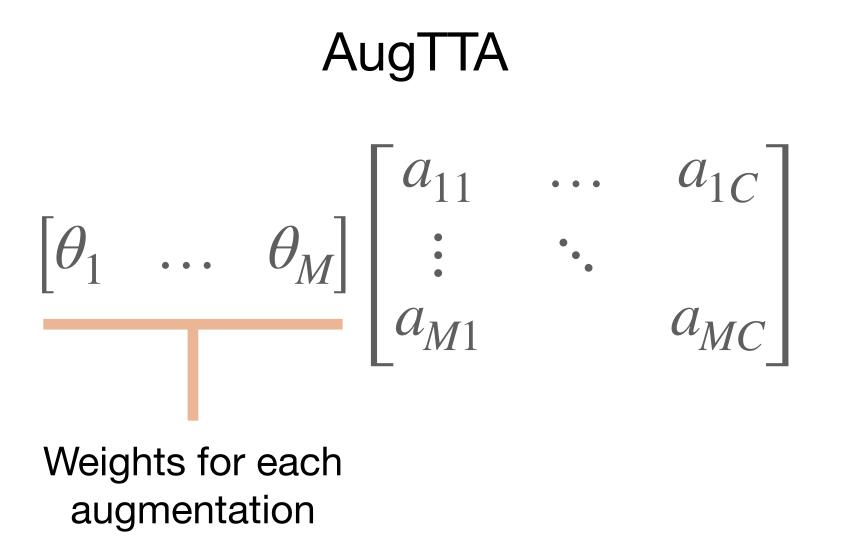
Two models:

- 1) Learn a weight parameter for each augmentation
- 2) Learn a weight parameter for each augmentation-class pair

entation entation-class pair

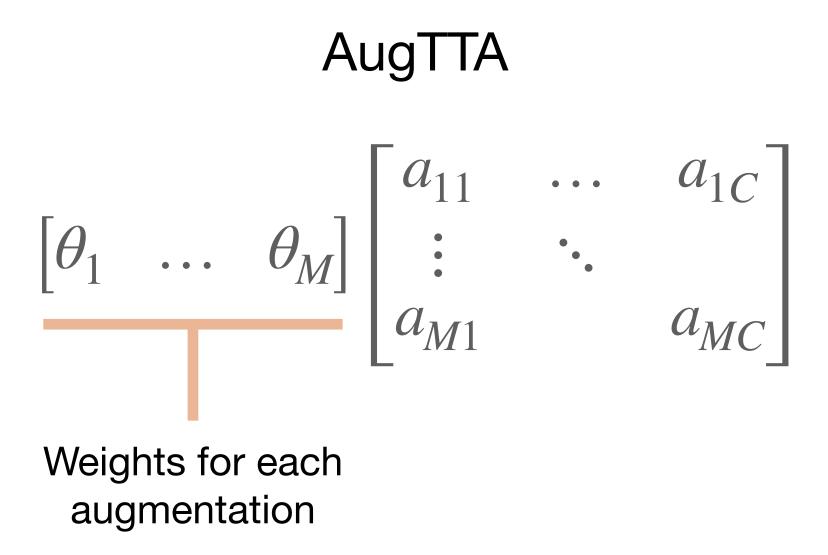
Two models:

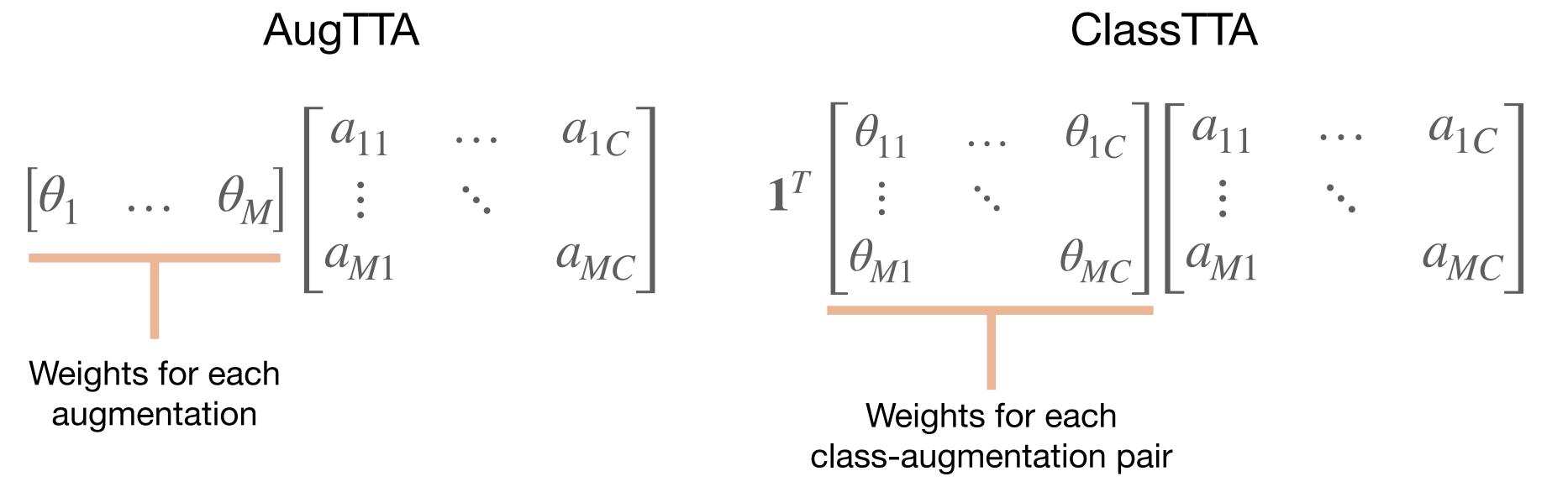
1) Learn a weight parameter for each augmentation 2) Learn a weight parameter for each augmentation-class pair



Two models:

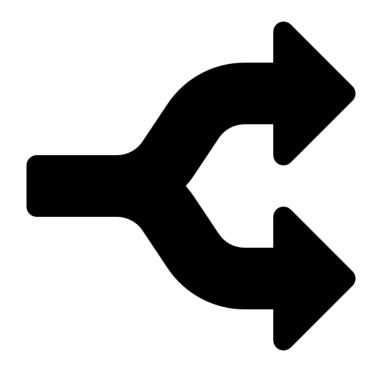
1) Learn a weight parameter for each augmentation 2) Learn a weight parameter for each augmentation-class pair



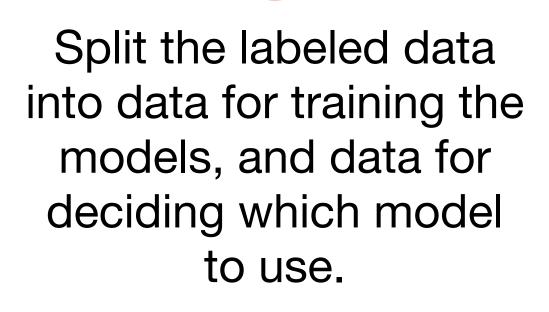


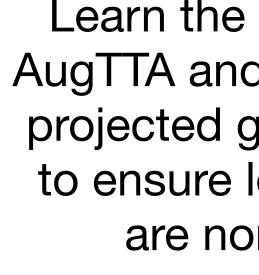
Our method in three steps:

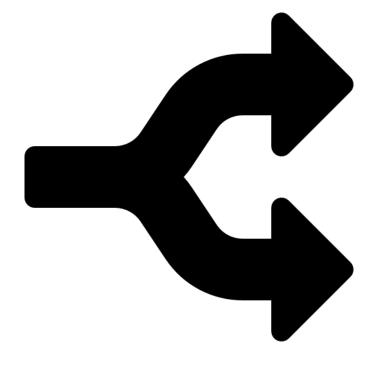
Split the labeled data into data for training the models, and data for deciding which model to use.



Our method in three steps:

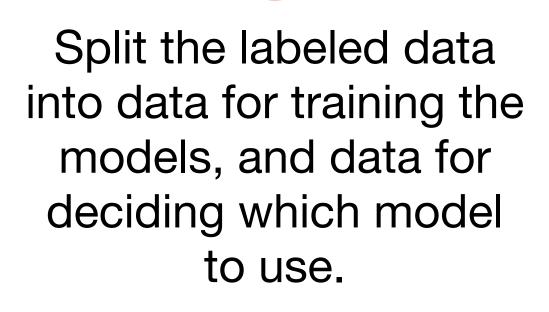


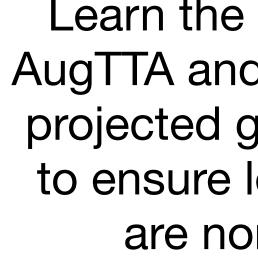


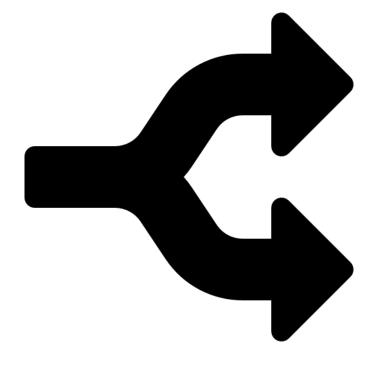


Learn the parameters for AugTTA and ClassTTA using projected gradient descent to ensure learned weights are non-negative.

Our method in three steps:







Learn the parameters for AugTTA and ClassTTA using projected gradient descent to ensure learned weights are non-negative.

Choose AugTTA or ClassTTA based on performance on the held-out data.

Dataset	Model	Original	Max	Mean	GPS	Ours
Flowers102	MobileNetV2	90.28 ± 0.10				

Dataset	Model	Original	Max	Mean	GPS	Ours
Flowers102	MobileNetV2	90.28 ± 0.10	90.17 ± 0.25			

Dataset	Model	Original	Max	Mean	GPS	Ours
Flowers102	MobileNetV2	90.28 ± 0.10	90.17 ± 0.25	90.47 ± 0.20		

Dataset	Model	Original	Max	Mean	GPS	Ours
Flowers102	MobileNetV2	90.28 ± 0.10	90.17 ± 0.25	90.47 ± 0.20	88.28 ± 0.17	

Dataset	Model	Original	Max	Mean	GPS	Ours
Flowers102	MobileNetV2	90.28 ± 0.10	90.17 ± 0.25	90.47 ± 0.20	88.28 ± 0.17	92.62 ± 0.10

				•		
Dataset	Model	Original	Max	Mean	GPS	Ours
Flowers102	MobileNetV2	90.28 ± 0.10	90.17 ± 0.25	90.47 ± 0.20	88.28 ± 0.17	92.62 ± 0.10
Flowers102	InceptionV3	89.28 ± 0.08	89.59 ± 0.15	90.07 ± 0.22	89.93 ± 0.16	91.16 ± 0.21
Flowers102	ResNet-18	89.78 ± 0.17	89.47 ± 0.11	90.21 ± 0.23	90.01 ± 0.22	91.02 ± 0.17
Flowers102	ResNet-50	91.72 ± 0.18	91.61 ± 0.08	91.96 ± 0.27	92.03 ± 0.09	92.02 ± 0.16
ImageNet	MobileNetV2	71.38 ± 0.06	72.50 ± 0.13	72.69 ± 0.06	72.50 ± 0.11	72.43 ± 0.08
ImageNet	InceptionV3	69.66 ± 0.12	71.8 ± 0.09	72.45 ± 0.13	71.57 ± 0.10	72.79 ± 0.02
ImageNet	ResNet-18	69.37 ± 0.1	70.26 ± 0.13	71.02 ± 0.13	70.8 ± 0.1	71.06 ± 0.10
ImageNet	ResNet-50	75.78 ± 0.08	76.62 ± 0.08	76.91 ± 0.09	76.73 ± 0.11	76.75 ± 0.14
CIFAR100	CNN-7	74.15 ± 0.18	75.00 ± 0.31	75.48 ± 0.11	75.45 ± 0.21	75.92 ± 0.20
STL10	CNN-5	77.92 ± 0.19	77.76 ± 0.22	78.58 ± 0.25	78.32 ± 0.17	78.52 ± 0.31

TTA + smaller networks can exceed original performance of larger networks.

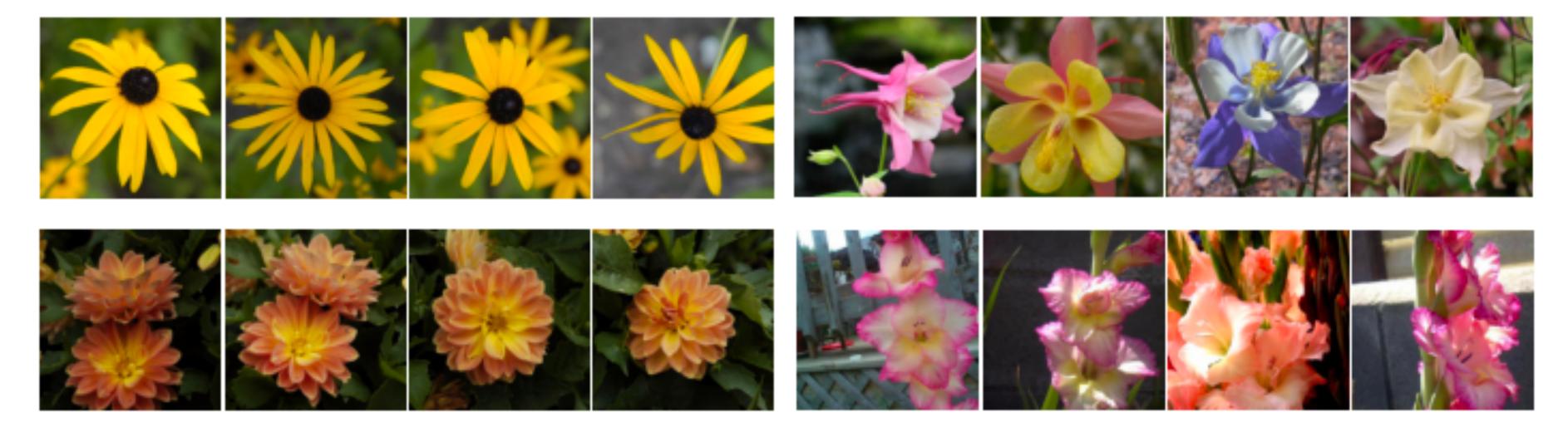
				-		
Dataset	Model	Original	Max	Mean	GPS	Ours
Flowers102	MobileNetV2	90.28 ± 0.10	90.17 ± 0.25	90.47 ± 0.20	88.28 ± 0.17	92.62 ± 0.10
Flowers102	InceptionV3	89.28 ± 0.08	89.59 ± 0.15	90.07 ± 0.22	89.93 ± 0.16	91.16 ± 0.21
Flowers102	ResNet-18	89.78 ± 0.17	89.47 ± 0.11	90.21 ± 0.23	90.01 ± 0.22	91.02 ± 0.17
Flowers102	ResNet-50	91.72 ± 0.18	91.61 ± 0.08	91.96 ± 0.27	92.03 ± 0.09	92.02 ± 0.16
ImageNet	MobileNetV2	71.38 ± 0.06	72.50 ± 0.13	72.69 ± 0.06	72.50 ± 0.11	72.43 ± 0.08
ImageNet	InceptionV3	69.66 ± 0.12	71.8 ± 0.09	72.45 ± 0.13	71.57 ± 0.10	72.79 ± 0.02
ImageNet	ResNet-18	69.37 ± 0.1	70.26 ± 0.13	71.02 ± 0.13	70.8 ± 0.1	71.06 ± 0.10
ImageNet	ResNet-50	75.78 ± 0.08	76.62 ± 0.08	76.91 ± 0.09	76.73 ± 0.11	76.75 ± 0.14
CIFAR100	CNN-7	74.15 ± 0.18	75.00 ± 0.31	75.48 ± 0.11	75.45 ± 0.21	75.92 ± 0.20
STL10	CNN-5	77.92 ± 0.19	77.76 ± 0.22	78.58 ± 0.25	78.32 ± 0.17	78.52 ± 0.31

TTA + smaller networks can exceed original performance of larger networks.

				-		
Dataset	Model	Original	Max	Mean	GPS	Ours
Flowers102	MobileNetV2	90.28 ± 0.10	90.17 ± 0.25	90.47 ± 0.20	88.28 ± 0.17	92.62 ± 0.10
Flowers102	InceptionV3	89.28 ± 0.08	89.59 ± 0.15	90.07 ± 0.22	89.93 ± 0.16	91.16 ± 0.21
Flowers102	ResNet-18	89.78 ± 0.17	89.47 ± 0.11	90.21 ± 0.23	90.01 ± 0.22	91.02 ± 0.17
Flowers102	ResNet-50	91.72 ± 0.18	91.61 ± 0.08	91.96 ± 0.27	92.03 ± 0.09	92.02 ± 0.16
ImageNet	MobileNetV2	71.38 ± 0.06	72.50 ± 0.13	72.69 ± 0.06	72.50 ± 0.11	72.43 ± 0.08
ImageNet	InceptionV3	69.66 ± 0.12	71.8 ± 0.09	72.45 ± 0.13	71.57 ± 0.10	72.79 ± 0.02
ImageNet	ResNet-18	69.37 ± 0.1	70.26 ± 0.13	71.02 ± 0.13	70.8 ± 0.1	71.06 ± 0.10
ImageNet	ResNet-50	75.78 ± 0.08	76.62 ± 0.08	76.91 ± 0.09	76.73 ± 0.11	76.75 ± 0.14
CIFAR100	CNN-7	74.15 ± 0.18	75.00 ± 0.31	75.48 ± 0.11	75.45 ± 0.21	75.92 ± 0.20
STL10	CNN-5	77.92 ± 0.19	77.76 ± 0.22	78.58 ± 0.25	78.32 ± 0.17	78.52 ± 0.31

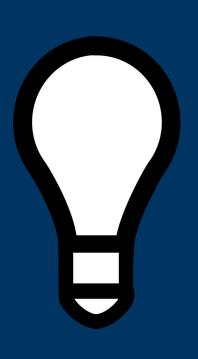
The weights learned by ClassTTA reflect variation in the training data.

Low Variance in Augmentation Weights



High Variance in Augmentation Weights

Our method improves classification accuracy and is **nearly free** in terms of model size, training time, and implementation burden.



The learned weights shed light on 1) dataset-specific and class-specific robustness to specific augmentations and 2) which classes exhibit higher variation in the training data.

In summary:

- * Class-specific and dataset-specific attributes have systematic effects on the performance of common approaches to TTA.
- classes are negatively affected by the use of TTA.
- pre-trained network.

Visit our poster to learn more! (or email me at <u>divyas@mit.edu</u>)

*We share insights on when TTA is likely to be successful and which

*We develop a method that increases the classification accuracy of a