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Test-time augmentation improves efficiency in conformal prediction
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Abstract
The goal in conformal classification is to output a
set of predicted classes, accompanied by a prob-
abilistic guarantee that the set includes the true
class. The utility of a conformal predictor de-
pends upon its ability to achieve a strong guaran-
tee without generating an excessively large set. In
practice, the utility of conformal prediction has
often been limited by a tendency to yield large
prediction sets. We study this phenomenon and
provide insights into why large set sizes persist,
even for conformal methods designed to produce
small sets. Using these insights, we propose a
method to reduce prediction set size while main-
taining coverage. We use test-time augmentation–
a technique that introduces inductive biases dur-
ing inference–to replace a classifier’s predicted
probabilities with probabilities aggregated over
a set of augmentations. Our approach is flexible,
computationally efficient, and effective. It can be
combined with any conformal score, requires no
model retraining, and reduces prediction set sizes
by up to 30%. We conduct an evaluation of the
approach spanning three datasets, three models,
two established conformal scoring methods, and
multiple coverage values to show when and why
test-time augmentation is a useful addition to the
conformal pipeline.

1. Introduction
Machine learning classifiers excel at providing the most
likely category for a particular input; where they often fall
short is in providing accurate notions of uncertainty (Guo
et al., 2017). Conformal prediction has emerged as a promis-
ing framework to provide existing classifiers with statisti-
cally valid uncertainty estimates. It does this by replacing
the prediction of the most likely class with an uncertainty
set–a set of classes accompanied by a probabilistic guar-
antee that the true class appears in the set (Vladmir Vovk,
2005). These properties have led to the application of confor-
mal prediction in multiple high-stakes domains, including
healthcare (Papadopoulos et al., 2009; Lu et al., 2022a) and
finance (Wisniewski et al., 2020).

Unfortunately, achieving a suitably strong guarantee of-
ten leads to prediction sets that are uninformatively large
(Babbar et al., 2022). For example, nearly every class in
the iNaturalist 2021 dataset (Van Horn et al., 2021) has an
average prediction set size of more than 100 species at a
coverage of 99%–even when using an algorithm designed
to yield small sets (Angelopoulos et al., 2022).

To build a conformal classifier one starts with a model that,
given an example, outputs a probability for each possible
class, and a desired coverage (the probability that the set
returned by the conformal predictor contains the correct
class). One then uses a calibration set of samples to derive a
conformal threshold, used to generate prediction sets that
contain the correct class at the pre-specified coverage level.
Overly large predictions sets can be generated when the
underlying classifier’s prediction for the true class is low.
This leads to the inclusion of many classes to meet the cov-
erage guarantee. In this work, we show that 1) introducing
inductive biases during inference, in the form of test-time
augmentation, can increase the predicted probability of the
true class, and 2) doing so leads to smaller prediction sets.

Test-time augmentation generates an ensemble of predic-
tions by perturbing the input with label-preserving transfor-
mations. In this work, we learn a test-time augmentation
policy of label-preserving transformations using a small set
of labeled data that is distinct from the labeled examples
used to identify the conformal threshold. In doing so, we
preserve the assumption of exchangeability, and thereby
the coverage guarantee. We demonstrate that the proposed
approach reduces set sizes for the classes with the largest
prediction set sizes by up to 30% with no loss of coverage.
We also show that test-time augmentation can bridge gaps
between classifiers of different sizes (e.g. test-time augmen-
tation combined with ResNet-50 produces smaller set sizes
than ResNet-101 alone).

Contributions The main contributions of this work are
threefold. 1) It is the first work to propose combining test-
time augmentation and conformal prediction. 2) We present
a method that reduces the prediction set sizes of existing
conformal predictors by using automatically learned test-
time augmentations. 3) We demonstrate, in an extensive set
of experiments, that our approach to combining conformal
prediction and test-time augmentation leads to dramatically
smaller prediction sets.
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Test-time augmentation improves efficiency in conformal prediction

Figure 1: We illustrate the addition of test-time augmentation to conformal calibration in green (left) and provide a snapshot
of the improvements it can confer (right). We show results on Imagenet, with a desired coverage of 95%, for the 20 classes
with the largest predicted set sizes on average (computed over 10 calibration/test splits).

2. Related work
In recent years, conformal prediction has become a popular
approach to uncertainty quantification in machine learning
(Barber et al., 2023). It was first introduced by Gammer-
man et al. (1998), and further developed by Saunders &
Holloway (1999) and Vladmir Vovk (2005). We review ef-
forts to ensemble conformal predictors and efforts to reduce
prediction set sizes below.

Ensembles in conformal prediction Several methods that
generate ensembles of conformal predictors are known to
improve efficiency. These methods include cross-conformal
prediction (Vovk, 2012), bootstrap conformal prediction
(Vovk, 2015), aggregated conformal prediction (Carlsson
et al., 2014; Linusson et al., 2017), and out-of-bag con-
formal prediction (Linusson et al., 2020). The approaches
primarily differ in how data is sampled to create the train-
ing dataset for the classifier and the calibration set for the
conformal predictor. The estimated thresholds are typically
averaged over the estimated conformal predictors. However,
all require training multiple base classifiers or conformal
predictors. Our approach is distinct: we propose a technique
to generate an ensemble from a single model by perturbing
the input, which requires no additional base models and no
additional conformal predictors.

Efficiency in conformal prediction There are two ways
to improve efficiency in split conformal prediction: adjust-
ments to the conformal score or improvements to the under-
lying model. Many works have proposed new procedures to
estimate and apply thresholds on conformal scores (Tibshi-
rani et al., 2019; Bellotti, 2021; Angelopoulos et al., 2022;
Prinster et al., 2022; Ding et al., 2023). Romano et al. (2020)
proposed APS, a conformal score based on the cumulative
probability required to include the correct class in a pre-

diction set. Angelopoulos et al. (2022) built on this work
to propose RAPS, which modifies APS by penalizing the
inclusion of low-probability classes. Comparatively little
work has focused on improvements to the underlying model.
Jensen et al. (2022) ensemble a set of base classifiers, where
the classifiers are created by training models on subsets of
the training data. Stutz et al. (2022) provide a new way
to train the base classifier and conformal wrapper jointly
through a conformal training loss. In contrast, our work fo-
cuses on improving the underlying model without retraining,
and can be easily combined with any of the above proce-
dures; indeed, we see that the smallest prediction set sizes
are achieved by combining TTA and RAPS.

Test-Time Augmentation Test-time augmentation (TTA)
is a popular technique to improve the accuracy, robustness,
and calibration of an existing classifier by aggregating pre-
dictions over a set of input transformations (Shanmugam
et al., 2021; Perez et al., 2021; Zhang et al., 2022; Enomoto
et al., 2023; Ayhan & Berens, 2018; Conde et al., 2023; Hek-
ler et al., 2023). TTA has been applied to a diverse range
of predictive tasks across domains ranging from healthcare
(Cohen et al., 2021) to content moderation (Lu et al., 2022b).
Consequently, many have proposed new ways to perform
TTA—for example, learning when to apply TTA (Mocerino
et al., 2021), which augmentations to use (Kim et al., 2020;
Lyzhov et al., 2020; Chun et al., 2022), and how to ag-
gregate the resulting predictions (Shanmugam et al., 2021;
Chun et al., 2022; Conde et al., 2023). Existing work typi-
cally focuses on test-time augmentation’s impact on highest
predicted probability. Here, we analyze how test-time aug-
mentation increases the predicted probability assigned to the
true class when it appears outside the top few classes, and
how that change is consequential in conformal prediction.
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3. Problem setting
We operate within the split conformal prediction framework.
In this setting, a conformal classifier C(Xi) ⊂ {1, . . . ,K}
maps input Xi to a subset of K possible classes and requires
three inputs:

• Calibration set D(cal) = {(X1, Y1), . . . , (XN , YN )},
containing N labeled examples.

• Classifier f̂ : X 7→ ∆K , mapping input domain X to
a probability distribution over K classes.

• Desired upper bound on error rate α ∈ [0, 1], where
(1− α) represents the probability the set contains the
true class.

We study the introduction of two variables drawn from the
test-time augmentation literature:

• Augmentation policy A = {a0, . . . , am}, consisting
of m + 1 augmentation functions, where a0 is the
identity transform. Policy A(xi) maps image xi to a
set of inputs consisting of the original image and m
augmentations of the original image.

• Aggregation function ĝ, which aggregates a set of
predictions to produce one prediction.

Each variable translates to a critical choice in test-time aug-
mentation: what augmentations to apply (A) and how to
aggregate the resulting probabilities (ĝ).

4. Approach
Preliminaries Our goal is to learn – given an augmenta-
tion policy A – an aggregation function ĝ to maximize the
accuracy of the underlying classifier, and ultimately reduce
the sizes of the prediction sets generated from the classi-
fier’s predicted probabilities. We will briefly outline the
conformal approach, and then detail the mechanics of our
method (illustrated in Figure 1).

Conformal predictors accept three inputs: a probabilistic
classifier f , a calibration set D(cal), and a pre-specified
error rate α. Using the these inputs, one can construct a
conformal predictor in three steps:

1. Define a score function c(x, y), which produces a con-
formal score representing the uncertainty of the input
example and label pair.

2. Produce a distribution of conformal scores across the
calibration set by computing c(xi, yi) for all (xi, yi) ∈
D(cal).

3. Compute threshold q̂ as the ⌈(n+1)(1−α)⌉/n quantile
of the distribution of conformal scores over n examples
in the calibration set.

For a new example x, we compute c(x, y) for all y ∈
{1, . . . ,K}, and include all yj for which c(x, yj) < q̂.
We adopt the conformal score proposed by Romano et al.
(2020), which equates to the cumulative probability required
to include the correct class:

π̂x(y
′) = p̂(y = y′|x) = f(x)y′ (1)

ρx(y) =

K∑
y′=1

π̂x(y
′)I[π̂x(y

′) > π̂x(y)] (2)

c(x, y) = ρx(y) + π̂x(y) (3)

where ρx(y) is the cumulative probability of all classes pre-
dicted with higher probability than y and π̂x(y

′) corresponds
to the predicted probability of class y′ given x. Conformal
score c(x, y) is thus composed of this cumulative probability
and the predicted probability of class y.

Proposal Our approach differs from prior work in that the
conformal score is derived by transforming the probabilities
output by f using test-time augmentation. Concretely, this
replaces Equation 1 with the following, parametrized by
augmentation policy A and augmentation weights θ.

π̂x(y
′) = p̂(y = y′|x) = ftta(xi; f,A,Θ) (4)

A key idea is to learn the aggregation weights θ using a por-
tion of the validation set, D(TTA), distinct from calibration
set used to identify the conformal threshold (D(cal)). In
contrast to traditional approaches, where all labeled data is
used to estimate the conformal threshold, we instead reserve
a portion to improve the underlying classifier. We learn a
set of weights which maximize classification accuracy on
D(TTA) by minimizing the cross-entropy loss1 computed
between the predicted probabilities and true labels. More
formally, ftta applies θ and A as follows:

ftta(xi; f,A,Θ) = ΘTA(f,A, xi) (5)

where A uses f to map input xi to a M ×K matrix of pre-
dicted probabilities where M is the number of augmentation
transforms and K is the number of classes. Θ is a 1×m vec-
tor corresponding to augmentation-specific weights. Each
row in A(f,A, xi) represents the pre-trained classifier’s pre-
dicted probabilities on augmentation am of xi or f(am(xi)).

1We found no significant difference between the use of cross-
entropy loss and alternate losses considered in the conformal pre-
diction literature (e.g. focal or conformal training loss). See Table
3 in the Appendix.
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TTA-Learned refers to TTA combined with learned augmen-
tation weights, while TTA-Avg refers to a simple average
over the augmentations.

We refer to the fraction of the validation set allotted to
D(TTA) as β. Figure 8 shows that performance is not sen-
sitive to the choice of β; as a result, all experiments use
β = .2 (see Section A.10 for further discussion). This does
reduce the amount of data available to identify the appro-
priate threshold, but we find that the benefits TTA confers
outweigh the cost to threshold estimation. Computational
cost scales linearly with the size of A; each additional aug-
mentation translates to a forward pass of the base classifier.
One can use the learned weights to save computation by
identifying which test-time augmentations to generate.

Preserving exchangeability The validity of conformal
prediction depends upon the assumption of exchangeability:
that all orderings of examples are equally likely (in effect,
meaning that the distribution of examples in the calibration
set is indistinguishable from the distribution of unseen ex-
amples). The use of distinct examples to learn the test-time
augmentation policy preserves this guarantee. If we were to
instead use the same examples to learn the test-time augmen-
tation policy and the conformal threshold, exchangeability
could be broken. For example, if the test-time augmenta-
tion policy is overfit to the calibration set, the distribution
of conformal scores during calibration will differ from the
distribution of scores over unseen examples.

5. Experimental Set-Up
Datasets We show results on the test splits of three
datasets: ImageNet (Deng et al., 2009) (50,000 natural im-
ages across 1,000 classes), iNaturalist (Van Horn et al.,
2021) (100,000 images spanning 10,000 species), and CUB-
Birds (Wah et al., 2011) (5,794 images representing 200
categories of birds). Images are distributed evenly over
classes in ImageNet and iNaturalist, while CUB-Birds has
between 11 and 30 images per class.

Models The default model architecture, across all datasets,
is ResNet-50 (He et al., 2016). The accuracies of the base
classifiers are 76.1% (ImageNet), 76.4% (iNaturalist), and
80.5% (CUB-Birds). To study the relationship between
model complexity and performance, we also provide results
using ResNet-101 and ResNet-152 on ImageNet. For Ima-
geNet, we make use of the pretrained models made available
by PyTorch (Paszke et al., 2019). For iNaturalist, we use a
model made public by Niers, Tom (2021). For CUB-Birds,
we train a network by finetuning the final layer of a ResNet-
50 model initialized with ImageNet’s pretrained weights.

Augmentations We consider two augmentation policies.
The first (the simple augmentation policy) consists of a
random-crop and a horizontal-flip; to produce a random
crop, we pad the original image with 4 pixels and take a
256x256 crop of the expanded image (thereby preserving the
original image resolution). The simple augmentation policy
is widely used because these augmentations are likely to be
label-preserving. The second, which we will term the ex-
panded augmentation policy, consists of 12 augmentations:
increase-sharpness, decrease-sharpness, autocontrast, invert,
blur, posterize, shear, translate, color-jitter, random crop,
horizontal-flip, and random-rotation. The supplement con-
tains a description of each augmentation (Sec. A.1). These
augmentations are not always label preserving, but, as we
show, can improve performance when weights are learned.

Baselines We benchmark results using two conformal
scores (translating to different definitions of c(x, y) in Equa-
tion 3). The first score is APS (Romano et al., 2020) (de-
scribed in Eqn. 3), which represents the cumulative proba-
bility required to include the correct class, and the second is
RAPS (Angelopoulos et al., 2022), which modifies APS by
adding a term to penalize large set sizes. For all experiments,
we perform randomization of conformal scores during cal-
ibration and do not allow sets of size 0. We implement
RAPS and APS using code provided by Angelopoulos et al.
(2022), and automatically select hyperparameters kreg and
λ to minimize set size. We also compare against conformal
prediction using a simple average over the test-time aug-
mentations (TTA-Avg). In the supplement, we also compare
against non-conformal Top-1 and Top-5 prediction sets.

Evaluation We evaluate results using the three metrics
commonly used in the conformal prediction literature: ef-
ficiency, coverage, and adaptivity. We quantify efficiency
using two both average prediction set size (measured across
all examples) and class-conditional prediction set size (mea-
sured across all examples in a class). Coverage is the per-
centage of sets containing the true label. We define adap-
tivity as the size-stratified coverage violation (SSCV), in-
troduced by Angelopoulos et al. (2022). We first partition
examples based upon the size of the prediction set. We cre-
ate bins for set sizes of [0, 1], [2, 3], [4, 10], and [101, ]. We
then compute the empirical coverage within each bin, and
compute adaptivity as the maximum difference between the-
oretical coverage and empirical coverage across bins. The
closer this value is to 0, the better the adaptivity.

For each dataset, we report results across 10 randomly gen-
erated splits into validation and test sets. For all experiments
(save for the validation set size experiment), the validation
set and test set are the same size. We allot 20% of exam-
ples from the validation set to D(TTA) (used to learn TTA
policy), and allot the remaining examples to the calibration
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set. For the experiment studying validation set size, we
downsample the validation set. We compute statistical sig-
nificance using a paired t-test, with a Bonferroni correction
(Weisstein, 2004) for multiple hypothesis testing. Code to
reproduce all experiments will be made publicly available.

6. Results
We first provide statistics on large prediction sets in Sec.
6.1 and present results on the improvements TTA confers
across multiple datasets, coverage values, and augmenta-
tion policies. We compare against RAPS in the main text
since it outperforms baselines in every comparison, and pro-
vide results comparing our method to APS and the Top-K
baselines in the supplement (Sec. A.6 and Sec. A.5 respec-
tively). Replicates of each experiments across multiple α
and datasets can be found in Section A.8. We then examine
the dependence of these results on dataset, base model, and
class. We conclude by providing some intuition about why
test-time augmentation improves the efficiency of conformal
predictors.

6.1. Large prediction set sizes.

For the datasets studied here, conventional conformal pre-
dictors often produce large prediction sets which consist of
many low-probability classes.

Consider the coverage (vs) prediction set size tradeoff made
by RAPS(Angelopoulos et al., 2022) (Table 1), a widely
used conformal prediction framework designed to produce
small set sizes. For a coverage level of 99%, RAPS pro-
duces large prediction sets: 10% of examples receive a set
size larger than 100 for Imagenet, 193 for iNaturalist, and
44 for CUB-Birds. Looking at the classes included in the
prediction sets across all examples, we can see that a large
percentage are associated with predicted probabilities lower
than 1/(# of classes): 47% for ImageNet, 62% for iNatural-
ist, and 45% for CUB-Birds. Relaxing the coverage to 95%,
we can still observe large prediction sets: 10% of examples
still receive large set sizes (ImageNet: ≥ 10, iNaturalist:
≥ 14, CUB-Birds: ≥ 6).

The existence of large prediction sets is not a criticism of
RAPS; it corresponds to a limitation of the underlying proba-
bilistic classifier. There are two possible remedies: improve-
ments to the conformal score, as many prior works have ex-
plored (Tibshirani et al., 2019; Angelopoulos & Bates, 2022;
Guan, 2023), or improvements to the underlying classifier.
As the next section will illustrate, test-time augmentation
is a viable approach to improving the underlying classifier,
and thereby the performance of conformal predictors.

6.2. TTA produces consistent and significant reductions
in prediction set size.

We begin with results in the context of the expanded aug-
mentation policy.

Learned test-time augmentation policies produce mean-
ingfully significant reductions in prediction set size
(RAPS+TTA-Learned in Table 1 and APS+TTA-Learned in
Table 6). TTA-Learned reduces prediction set sizes signifi-
cantly in 16 of the 18 cases, and performs comparably in the
remaining 2. Across all cases, the combination of RAPS,
TTA-Learned, and the expanded augmentation policy pro-
duces the smallest average set sizes.

Comparing learned augmentation weights (TTA-Learned)
to a fixed average (TTA-Avg) on the expanded augmentation
policy, we find that TTA-Learned performs comparably
or better than TTA-Avg in all comparisons. When we look
at the weights learned for the expanded augmentation policy,
we see that several augmentations (blur, decrease sharpness,
and shear) are consistently assigned a weight of 0, while
certain augmentations are consistently included in learned
policies (autocontrast, translate).

While TTA improves both RAPS and APS, it produces
improvements larger in magnitude for APS (up to 36%
across datasets). This is because TTA, like RAPS, tem-
pers the predicted probabilities. TTA lowers the maximum
predicted probability on average, thereby reducing model
overconfidence. Consequently, the predicted probability
assigned to the remaining classes is higher. This is why
the expanded augmentation policy demonstrates such strong
performance compared to the simple augmentation policy:
it tempers the probabilities to a greater extent.

TTA-Learned preserves coverage across all experiments,
since it respects the assumption of exchangeability. In some
cases, TTA significantly improves coverage, although the
magnitude of this difference is small (exact values can be
found in Tables 10 and 11). We next evaluate adaptivity
using size stratified coverage violation (SSCV). At low alpha
(α = .01, and α = .05), TTA-Learned improves efficiency at
no cost to adaptivity. At higher alpha (α = .10), there are
three settings in which TTA-Learned produces lower values
for SSCV (significant according to a paired t-test).

6.3. Datasets, augmentation policies, and base models

Dependence on dataset TTA consistently improves pre-
diction set sizes on ImageNet and iNaturalist, but not CUB-
Birds. This may be because the validation set size for CUB-
Birds (2,827 images) is an order of magnitude smaller than
the validation sets for ImageNet (25,000 images) and iNatu-
ralist (50,000 images). This is consistent with our finding
that effectiveness of TTA is positively correlated with the
size of the validation set (Figure A.11).
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Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 RAPS 37.751 ± 2.334 61.437 ± 6.067 15.293 ± 2.071 37.751 ± 2.334 61.437 ± 6.067 15.293 ± 2.071
0.01 RAPS+TTA-Avg 35.600 ± 2.200 57.073 ± 5.914 13.111 ± 2.470 31.681 ± 3.057 54.169 ± 6.319 14.550 ± 1.425
0.01 RAPS+TTA-Learned 31.248 ± 2.177 53.195 ± 4.884 14.045 ± 1.323 32.702 ± 2.409 51.391 ± 5.211 13.803 ± 1.734
0.05 RAPS 5.637 ± 0.357 7.991 ± 1.521 3.624 ± 0.361 5.637 ± 0.357 7.991 ± 1.521 3.624 ± 0.361

0.05 RAPS+TTA-Avg 5.318 ± 0.113 7.067 ± 0.344 3.116 ± 0.210 4.908 ± 0.099 6.451 ± 0.279 3.249 ± 0.307
0.05 RAPS+TTA-Learned 4.889 ± 0.168 6.682 ± 0.447 3.571 ± 0.576 5.040 ± 0.176 6.788 ± 0.496 3.290 ± 0.186
0.10 RAPS 2.548 ± 0.074 2.914 ± 0.116 2.038 ± 0.153 2.548 ± 0.074 2.914 ± 0.116 2.038 ± 0.153

0.10 RAPS+TTA-Avg 2.470 ± 0.071 2.740 ± 0.026 1.780 ± 0.139 2.327 ± 0.086 2.610 ± 0.031 1.881 ± 0.118
0.10 RAPS+TTA-Learned 2.312 ± 0.054 2.625 ± 0.043 1.893 ± 0.187 2.362 ± 0.065 2.638 ± 0.026 1.840 ± 0.106

Table 1: Results across datasets, augmentation policies, and coverage specifications. Each entry corresponds to the average
prediction set size across 10 calibration/test splits. Bolded entries represent performance that is either (a) significantly better
compared to the baseline (RAPS), or (b) indistinguishable from the best approach. Table 10 reports achieved coverage.
Corresponding results for APS can be found in Table 7.

Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 RAPS 37.751 ± 2.334 33.624 ± 1.796 29.560 ± 3.481 37.751 ± 2.334 33.624 ± 1.796 29.560 ± 3.481

0.01 RAPS+TTA-Avg 35.600 ± 2.200 30.220 ± 1.774 27.203 ± 2.526 31.681 ± 3.057 27.206 ± 1.840 24.106 ± 2.100
0.01 RAPS+TTA-Learned 31.248 ± 2.177 25.722 ± 1.713 23.615 ± 1.656 32.702 ± 2.409 26.760 ± 1.974 24.765 ± 2.736
0.05 RAPS 5.637 ± 0.357 4.785 ± 0.102 4.376 ± 0.078 5.637 ± 0.357 4.785 ± 0.102 4.376 ± 0.078

0.05 RAPS+TTA-Avg 5.318 ± 0.113 4.433 ± 0.137 4.163 ± 0.185 4.908 ± 0.099 4.147 ± 0.122 3.868 ± 0.126
0.05 RAPS+TTA-Learned 4.889 ± 0.168 4.200 ± 0.200 3.824 ± 0.128 5.040 ± 0.176 4.194 ± 0.194 3.916 ± 0.356
0.10 RAPS 2.548 ± 0.074 2.267 ± 0.024 2.109 ± 0.027 2.548 ± 0.074 2.267 ± 0.024 2.109 ± 0.027

0.10 RAPS+TTA-Avg 2.470 ± 0.071 2.164 ± 0.031 2.049 ± 0.028 2.327 ± 0.086 2.093 ± 0.035 1.996 ± 0.018
0.10 RAPS+TTA-Learned 2.312 ± 0.054 2.099 ± 0.040 1.993 ± 0.026 2.362 ± 0.065 2.091 ± 0.041 1.988 ± 0.020

Table 2: Results across base classifiers for ImageNet. TTA-Learned can bridge the performance gap between different
classifiers (for example, outperforming ResNet-152 alone when combined with ResNet-101), and yields significant reductions
in set size regardless of the pretrained classifier used. We report achieved coverage in Table 11.

Dependence on augmentation policy We find that the
expanded augmentation policy produces greater reductions
in set size than the simple augmentation policy. Although
the introduction of many augmentations outside of the base
model’s train-time augmentation policy can decrease the
Top-1 accuracy of a classifier, the conformal scores use
the predicted probabilities for all classes. So, while the
expanded test-time augmentation policy may not result in
a significantly more accurate Top-1 classifier, it modifies
the predicted probabilities for lower ranked classes. Larger
augmentation policies also yield greater reductions in av-
erage prediction set size (Figure 7). That said, the simple
augmentation policy does have its place; it requires fewer
forward passes during inference. In the absence of a learned
aggregation function, our results suggest that aggregating
using an average can still improve the efficiency of con-
formal predictors (outperforming the original conformal

score in 11 comparisons, matching performance in 3, and
underperforming in 4).

Dependence on base model We test the generalizability
of our results to other models by rerunning the ImageNet
experiments using ResNet-101 (accuracy of 77.4%) and
ResNet-152 (accuracy of 78.3%). Unsurprisingly, more ac-
curate models result in smaller prediction set sizes (Table
2). TTA variants of conformal prediction again produce
significant improvements in set size while maintaining cov-
erage. We were surprised to find that the combination of
TTA with ResNet-101 produces smaller set sizes than the
more complex ResNet-152 alone. For example, when α is
set to .01, RAPS+TTA-Learned and ResNet-101 produce
set sizes that contain, on average, 26.5 classes, while RAPS
and ResNet-152 produce an average set size of 29.6.
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Figure 2: (A) Class-conditional prediction set sizes. The histogram describes the distribution of class-conditional prediction
set sizes. We plot results for ImageNet with α = .01. RAPS+TTA-Learned (green) produces a noticeable reduction in
class-conditional prediction set sizes. (B, C) Relationship between TTA improvements and original class set sizes (B)
and class difficulty (C). Each point represents the average prediction set size for each class, across 5 splits. The reduction in
average set size introduced by TTA (plotted on the y-axis) is positively correlated with original class-conditional set size ((B),
expanded: r = 0.89, p < 1e-10) and class difficulty ((C), expanded: r = 0.55, p < 1e-10). In other words, TTA introduces the
largest improvements for classes with the largest original prediction set sizes and classes on which the underlying classifier
is often incorrect.

Figure 3: (A) Effect of TTA-Learned on optimal Top-K: TTA-Learned significantly lowers the value of k required for
Top-k prediction sets to achieve coverage on ImageNet and iNaturalist, but not on CUB-Birds. (B,C) Effect of TTA-Learned
on rank of true class: TTA-Learned improves the rank of the true class among the sorted predicted probabilities for a given
example for both ImageNet (B) and iNaturalist (C). We plot the rank using the original predicted probabilities against the
rank using the TTA-transformed probabilities, binning all examples in the validation set into five equal-width bins. The
leftmost point in each plot describes a majority of the examples, because the classifier (ResNet-50) assigns the highest
predicted probability to the true class on 76.1% of observed examples. Dots that fall below the red line indicate that TTA
improves the rank of the true class. Vertical error bars represent spread in TTA-transformed ranks of the true class for
examples in a given bin, while horizontal error bars represent spread in the original rank of the true class. We include the
corresponding plot for CUB-Birds in the supplement.
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6.4. TTA is most effective for classes with the largest
prediction sets.

So far, we have established that on average TTA is a use-
ful addition to the conformal pipeline. We now ask where
this improvement come from, and what types of classes are
responsible. We make two empirical observations. First,
classes with larger predicted set sizes benefit most from
the introduction of TTA. Figure 2 shows that a class’s av-
erage prediction set size is significantly correlated with the
change in set size TTA-Learned introduces (with the ex-
panded augmentation policy and α = .01, r = 0.89 and
p < 1e − 10). Second, we find that class difficulty is sig-
nificantly associated with changes in set size introduced by
TTA (with the expanded augmentation policy and α = .01,
r = 0.55 and p < 1e-10), where prediction sets for difficult
classes benefit more from TTA compared to their easier
counterparts. These observations are related; harder classes
receive larger set sizes, and consequently, offer larger room
for improvements in efficiency.

7. Discussion
Why does the addition of test-time augmentation produce
smaller prediction set sizes? In short, TTA improves top-K
accuracy. We verify this claim by estimating k such that
the uncertainty sets comprised of the top k predicted classes
for each example achieve a marginal coverage of (1− α).
We see that the probabilities updated by TTA — both with
a simple average and learned weights — produce signifi-
cantly lower values for k compared to the original predicted
probabilities for both ImageNet and iNaturalist (Figure 3A).
This is not true for CUB-Birds, on which TTA offers little to
no improvement. One could use such a procedure to deter-
mine whether TTA is worth adding to a conformal pipeline
without collecting labeled data beyond the validation set.

Another way to understand the impact of TTA is to consider
the effect on the ordering of classes. It has been observed
in the test-time augmentation literature that TTA often pro-
motes the true class from the second-highest to the highest
predicted probability, thereby correcting the classification.
Here, we introduce a new finding, which explains why TTA
is particularly useful to conformal prediction. TTA also
increases the predicted probability of the true class even
when it is predicted to be unlikely (for example, promoting
the true class from 200th most likely to 100th most likely).
We visualize this effect in Figure 3 by plotting the change
in true class rank (the index at which the true class appears
in the sorted list of predicted probabilities) for all exam-
ples in the validation set, stratified into 5 equal-width bins.
The lower left point captures examples which are classified
correctly; here, test-time augmentation introduces little to
no change. In subsequent bins, we see that TTA typically
promotes the rank of the true class. We also include the

standard deviation across the true class ranks in the original
predicted probabilities (x-axis) and the TTA-transformed
probabilities (y-axis).

Broader applications of TTA to conformal prediction
There are many other ways to combine test-time augmenta-
tion and conformal prediction. One might apply test-time
augmentation during calibration (when computing confor-
mal scores on the calibration set) and not during inference.
This leads to smaller set sizes, but unsurprisingly breaks the
coverage guarantee. The converse (TTA during inference
and not calibration) maintains coverage but dramatically
increases the prediction set sizes (because TTA depresses
the maximum predicted probability, more classes can be
included in the outputted set). Finally, one could consider
the value of throwing away conformal prediction (and the
guarantees it comes with) altogether, and creating a set out
of the predictions made on each of the augmentations; refer
to Section A.13 for further discussion.

Limitations Learned test-time augmentation policies re-
quire two ingredients: labeled data and multiple forward
passes. Although one can minimize costs by parallelizing
computation or by using the learned weights to identify
which augmentations to generate, inference will always cost
more with test-time augmentation. Our results also rely
on transformations typically used in image classification.
We do not consider other modalities, for which appropriate
transformations will substantially differ. Finally, test-time
augmentation is one approach to generating ensembles in
conformal prediction. Many other more computationally ex-
pensive approaches exist. Elucidating the trade-off between
computation and ensemble performance is a useful avenue
for future work.

8. Conclusion
We present an approach that improves the efficiency of con-
formal predictors by using test-time augmentation to replace
a classifier’s predicted probabilities with probabilities aggre-
gated over a set of transformations. Moreover, we show that
the learned inductive biases introduced by TTA improve the
predicted probability assigned to the true class, even when
the true class is predicted to be unlikely. Our experiments
show that the approach is effective, efficient, and simple: it
reduces prediction set sizes by up to 30%, requires no model
re-training, and relies on a portion of labeled data already
available to split conformal predictors. The performance of
TTA-Learned suggests that, given a labeled dataset, there
are settings in which it is wise to use a portion of the labeled
data to improve the underlying model is beneficial, instead
of reserving all labeled data for the calibration set. In sum,
our work takes a step towards practically useful conformal
predictors by improving efficiency, without sacrificing adap-
tivity or coverage.
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9. Broader impact
Conformal prediction represents a promising step forward
for uncertainty quantification in machine learning. As we
grow closer to the deployment of conformal prediction in
high-stakes settings, we see two socially-relevant considera-
tions:

• The relationship between uncertainty sets and human
models for decision making is not currently well-
understood. Human decision-making is known to be
biased and incorrect; it will be important to character-
ize how access to conformal predictions changes this
behavior.

• Conformal predictions, as considered in this work, of-
fer a coverage guarantee on average, rather than per
example. There may still be subsets of the distribution
of examples for which prediction sets do not meet the
coverage guarantee. Ongoing work towards conformal
prediction with conditional guarantees aims to address
this problem, but it remains relevant to the deployment
of uncertainty sets in safety-critical settings.
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Test-time augmentation improves efficiency in conformal prediction

A. Appendix
A.1. Augmentations

The simple augmentation policy consists of a random crop and a horizontal flip, drawn from a widely used test-time
augmentation policy in image classification (Krizhevsky et al., 2012). The random crop pads the original image by 4
pixels and takes a 256x256 crop of the resulting image. The expanded augmentation consists of 12 augmentations; certain
augmentations are stochastic, while others are deterministic. We design this set based on the augmentations included
in AutoAugment (Cubuk et al., 2019). We exclude certain augmentations, however, to exclude 1) redundancies among
augmentations and thereby make the learned weights interpretable and 2) augmentations are unlikely to be label-preserving.
In particular, we exclude CutOut (because it is clearly not label-preserving in many domains) and exclude brightness,
contrast, saturation, and color for their overlap with color-jitter. We also exclude contrast, because it is already modified
via autocontrast, and equalize and solarize for their overlap with autocontrast and invert. This leaves us the following
augmentations:

• Shear: Shear an image by some number of degrees, sampled between [-10, 10] (stochastic).

• Translate: Samples a vertical shift (by fraction of image height) from [0, .1] (stochastic).

• Rotate: Samples a rotation (by degrees) from [-10, 10] (stochastic).

• Autocontrast: Maximizes contrast of images by remapping pixel values such that the the lowest becomes black and the highest
becomes white (deterministic).

• Invert: Inverts the colors of an image (deterministic).

• Blur: Applies Gaussian blur with kernel size 5 (and default σ range of [.1, .2]) (stochastic).

• Posterize: Reduces the number of bits per channel to 4 (deterministic).

• Color Jitter: Randomly samples a brightness, contrast, and saturation adjustment parameter from the range [.9, 1.1] (stochastic).

• Increase Sharpness: Adjusts sharpness of image by a factor of 1.3 (deterministic).

• Decrease Sharpness: Adjusts sharpness of image by a factor of 0.7 (deterministic).

• Random Crop: Pads each image by 4 pixels, takes a 256x256 crop, and then proceeds to take a 224x224 center crop (stochastic).

• Horizontal Flip: Flips image horizontally (deterministic).

There are many possible expanded test-time augmentation policies; this particular policy serves as an illustrative example.

A.2. Learning aggregation function ĝ

We learn ĝ by minimizing the cross-entropy loss with respect to the true labels on the calibration set. Specifically, we
learning the weights using SGD with a learning rate of .01, momentum of .9, and weight decay of 1e-4. We train each model
for 50 epochs. There are natural improvements to this optimization, but this is not the focus of our work. Instead, our goal is
to highlight the surprising effectiveness of TTA-Learned without the introduction of hyperparameter optimization.

A.3. Results of comparison to training on focal loss

We expand Table 1 to include results for a variant of TTA-Learned which uses a focal loss in place of the cross-entropy loss.
We conduct this exploration because empirically, the focal loss has been known to produce better-calibrated models. In
practice, we see little difference between results when using a different loss function; RAPS+TTA-Leanred still outperforms
RAPS + an average over the test-time augmentations, and RAPS alone. While this speaks to the method’s flexibility to
different loss functions, it is possible that the use of a loss function designed to reduce prediction set size could produce
better performance.

A.4. Results of comparison to different test-time augmentation weighting schemes

One could weight each test-time augmentation by the accuracy achieved on the set of examples used to learn the test-time
augmentation policy. We show results of doing so in Table 4. We include two variants of this approach: one in which each
augmentations predictions are weighted by the classification accuracy of that augmented prediction (TTA-Acc-Weighted),
and one in which each augmentation’s predictions are inversely weighted with respect to the classification error on the
labeled dataset. Unsurprisingly, this type of approach places too much weight on unhelpful augmentations. Learning the
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Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet CUB-Birds ImageNet CUB-Birds

0.01 RAPS+TTA-Learned+Focal 32.612 ± 3.799 13.416 ± 1.991 31.230 ± 1.510 15.503 ± 2.364

0.01 RAPS+TTA-Learned+Conformal 32.257 ± 3.608 13.776 ± 2.198 31.716 ± 2.078 14.432 ± 2.184

0.01 RAPS+TTA-Learned+CE 31.248 ± 2.177 14.045 ± 1.323 32.702 ± 2.409 13.803 ± 1.734

0.05 RAPS+TTA-Learned+Focal 4.906 ± 0.195 3.194 ± 0.202 4.956 ± 0.239 3.313 ± 0.331

0.05 RAPS+TTA-Learned+Conformal 4.867 ± 0.122 3.302 ± 0.312 4.996 ± 0.405 3.412 ± 0.406

0.05 RAPS+TTA-Learned+CE 4.889 ± 0.168 3.571 ± 0.576 5.040 ± 0.176 3.290 ± 0.186

0.10 RAPS+TTA-Learned+Focal 2.363 ± 0.085 1.791 ± 0.102 2.308 ± 0.045 1.860 ± 0.131

0.10 RAPS+TTA-Learned+Conformal 2.308 ± 0.068 1.865 ± 0.163 2.330 ± 0.072 1.868 ± 0.122

0.10 RAPS+TTA-Learned+CE 2.312 ± 0.054 1.893 ± 0.187 2.362 ± 0.065 1.840 ± 0.106

Table 3: Results across datasets for two augmentation policies and three coverage specifications using a focal loss. We set
γ to be 1, in line with prior work (Einbinder et al.). Each entry corresponds to the average prediction set size across 10
calibration/test splits. Both the focal and conformal loss do not outperform the cross-entropy loss; for simplicity, we report
all results using the cross-entropy loss.

weights directly produces the best performance using the expanded augmentation policy. Learning the weights has little
effect with the simple augmentation policy (a consistent result across all experiments).

A.5. Results of comparison to Top-1 and Top-5

We expand Table 1 to include the Top-1 and Top-5 baselines in Table 5. Unsurprisingly, neither outperform RAPS, and
consequently none outperform the combination of RAPS, TTA-Learned, and the expanded augmentation policy.

A.6. Results using APS

TTA-Learned combined with the expanded augmentation policy produces the smallest set sizes when combined with APS,
across the datasets considered (Table 6) and each base classifier (Table 8). In contrast to the results using RAPS, TTA-
Learned does not significantly outperform TTA-Avg when combined with APS. The central reason is that the improvements
TTA confers — namely, improved top-k accuracy — do not address the underlying sensitivity of APS to classes with
low predicted probabilities. As Angelopoulos et al. (2022) discuss, APS produces large prediction sets because of noisy
estimates of small probabilities, which then end up included in the prediction sets. Both TTA-Learned and TTA-Avg smooth
the probabilities: they reduce the number of low-probability classes by aggregating predictions over perturbations of the
image. The benefit that both TTA-Learned and TTA-Avg add to APS is thus similar to how RAPS penalizes classes with
low probabilities.

A.7. Results on coverage

We provide exact values of coverage for each experiment here. In short, TTA-Learned combined with the expanded
augmentation policy never worsens coverage, and in some cases, significantly improves it (although the improvements are
small in magnitude). For those interested, we mirror each table describing average prediction set size with a table describing
average coverage: coverage values for the RAPS experiment across coverage values and datasets can be found in Table
10 and coverage values for the RAPS experiment across base classifiers can be found in Table 11. Similarly, we provide
coverage values for the APS experiment across datasets (Table 7) and across models (Table 8).

A.8. Replicated results with different alphas, datasets

We replicate the class-specific analysis for ImageNet at a value of α = .05 (Figure 4), iNaturalist (Figure 5), and CUB-Birds
(Figure 6). All trends are consistent with results in the main text, save for one notable exception: when TTA-Learned
is applied to CUB-Birds, prediction set sizes of the classes with the smallest prediction set sizes and classes that are
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Test-time augmentation improves efficiency in conformal prediction

Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet ImageNet

0.01 RAPS+TTA-Avg 35.600 ± 2.200 31.681 ± 3.057
0.01 RAPS+TTA-Acc-Weighted 37.115 ± 4.112 33.561 ± 5.174
0.01 RAPS+TTA-Err-Weighted 36.012 ± 3.501 33.415 ± 2.619
0.01 RAPS+TTA-Learned 31.723 ± 1.737 32.702 ± 2.409
0.05 RAPS+TTA-Avg 5.318 ± 0.113 4.908 ± 0.099
0.05 RAPS+TTA-Acc-Weighted 5.258 ± 0.171 4.942 ± 0.242
0.05 RAPS+TTA-Err-Weighted 5.352 ± 0.366 4.859 ± 0.139
0.05 RAPS+TTA-Learned 4.897 ± 0.304 5.040 ± 0.176
0.10 RAPS+TTA-Avg 2.470 ± 0.071 2.327 ± 0.086
0.10 RAPS+TTA-Acc-Weighted 2.443 ± 0.068 2.352 ± 0.085
0.10 RAPS+TTA-Err-Weighted 2.416 ± 0.076 2.348 ± 0.065
0.10 RAPS+TTA-Learned 2.290 ± 0.064 2.362 ± 0.065

Table 4: Results comparing learned weights to no augmentation-specific weights (TTA-Avg) and weights inferred from each
test-time augmentation’s accuracy (TTA-Acc-Weighted) or error (inverse weighting with respect to 1 - aug acc). These
results show that naive methods to weight the test-time augmentations can improve upon no learned weights at all, but
learning the weights directly produces the best performance.

ImageNet iNaturalist CUB-Birds

Alpha Method Prediction Set Size Empirical Coverage Prediction Set Size Empirical Coverage Prediction Set Size Empirical Coverage

0.01 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008

0.01 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003

0.01 RAPS 37.751 ± 2.334 0.990 ± 0.001 61.437 ± 6.067 0.990 ± 0.001 15.293 ± 2.071 0.990 ± 0.001

0.01 RAPS+TTA-Avg 35.600 ± 2.200 0.991 ± 0.001 57.073 ± 5.914 0.990 ± 0.001 13.111 ± 2.470 0.991 ± 0.002

0.01 RAPS+TTA-Learned 31.248 ± 2.177 0.990 ± 0.001 53.195 ± 4.884 0.990 ± 0.001 14.045 ± 1.323 0.991 ± 0.002

0.05 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008

0.05 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003

0.05 RAPS 5.637 ± 0.357 0.951 ± 0.002 7.991 ± 1.521 0.954 ± 0.002 3.624 ± 0.361 0.955 ± 0.007

0.05 RAPS+TTA-Avg 5.318 ± 0.113 0.951 ± 0.001 7.067 ± 0.344 0.952 ± 0.002 3.116 ± 0.210 0.954 ± 0.007

0.05 RAPS+TTA-Learned 4.889 ± 0.168 0.952 ± 0.001 6.682 ± 0.447 0.954 ± 0.002 3.571 ± 0.576 0.957 ± 0.007

0.10 Top-1 1.000 ± 0.000 0.761 ± 0.002 1.000 ± 0.000 0.766 ± 0.001 1.000 ± 0.000 0.804 ± 0.008

0.10 Top-5 5.000 ± 0.000 0.928 ± 0.001 5.000 ± 0.000 0.915 ± 0.001 5.000 ± 0.000 0.959 ± 0.003

0.10 RAPS 2.548 ± 0.074 0.906 ± 0.004 2.914 ± 0.116 0.907 ± 0.003 2.038 ± 0.153 0.919 ± 0.014

0.10 RAPS+TTA-Avg 2.470 ± 0.071 0.905 ± 0.005 2.740 ± 0.026 0.908 ± 0.002 1.780 ± 0.139 0.912 ± 0.014

0.10 RAPS+TTA-Learned 2.312 ± 0.054 0.905 ± 0.004 2.625 ± 0.043 0.909 ± 0.003 1.893 ± 0.187 0.919 ± 0.016

Table 5: Results comparing performance against Top-K baselines. In each setting, conformal prediction produces either
smaller set sizes, higher coverage, or both compared to the Top-K baselines.
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Test-time augmentation improves efficiency in conformal prediction

Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 APS 98.493 ± 3.075 131.681 ± 3.515 19.436 ± 0.995 98.493 ± 3.075 131.681 ± 3.515 19.436 ± 0.995
0.01 APS+TTA-Avg 68.714 ± 2.856 84.546 ± 3.655 17.715 ± 1.523 92.027 ± 4.797 145.401 ± 4.635 19.152 ± 1.667
0.01 APS+TTA-Learned 69.009 ± 2.156 85.093 ± 2.768 17.766 ± 1.608 90.613 ± 6.421 144.134 ± 4.371 18.552 ± 1.326
0.05 APS 19.820 ± 0.482 33.481 ± 0.786 5.921 ± 0.192 19.820 ± 0.482 33.481 ± 0.786 5.921 ± 0.192
0.05 APS+TTA-Avg 14.308 ± 0.279 26.021 ± 0.282 4.870 ± 0.208 18.862 ± 0.498 37.370 ± 0.735 6.306 ± 0.350

0.05 APS+TTA-Learned 14.084 ± 0.241 26.289 ± 0.529 4.913 ± 0.145 19.119 ± 0.479 36.940 ± 0.632 6.361 ± 0.480

0.10 APS 8.969 ± 0.158 16.755 ± 0.394 3.455 ± 0.164 8.969 ± 0.158 16.755 ± 0.394 3.455 ± 0.164
0.10 APS+TTA-Avg 7.193 ± 0.101 14.583 ± 0.333 3.108 ± 0.114 8.787 ± 0.136 18.300 ± 0.418 3.609 ± 0.135
0.10 APS+TTA-Learned 7.215 ± 0.106 14.538 ± 0.395 3.046 ± 0.073 8.813 ± 0.180 18.086 ± 0.420 3.638 ± 0.146

Table 6: We replicate our experiments across coverage levels and datasets using APS, another conformal score. TTA-Learned
combined with the expanded augmentation policy produces the smallest set sizes across all comparisons. Interestingly, the
simple augmentation policy is not as effective in the context of iNaturalist when using APS.

Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 APS 0.980 ± 0.001 0.986 ± 0.000 0.985 ± 0.001 0.980 ± 0.001 0.986 ± 0.000 0.985 ± 0.001
0.01 APS+TTA-Avg 0.985 ± 0.001 0.989 ± 0.001 0.989 ± 0.002 0.981 ± 0.001 0.987 ± 0.000 0.986 ± 0.003
0.01 APS+TTA-Learned 0.985 ± 0.001 0.989 ± 0.001 0.990 ± 0.002 0.980 ± 0.002 0.987 ± 0.000 0.985 ± 0.002
0.05 APS 0.931 ± 0.002 0.952 ± 0.001 0.945 ± 0.004 0.931 ± 0.002 0.952 ± 0.001 0.945 ± 0.004
0.05 APS+TTA-Avg 0.944 ± 0.002 0.956 ± 0.001 0.949 ± 0.005 0.937 ± 0.002 0.960 ± 0.001 0.949 ± 0.004

0.05 APS+TTA-Learned 0.943 ± 0.002 0.957 ± 0.001 0.950 ± 0.005 0.937 ± 0.002 0.959 ± 0.001 0.950 ± 0.005

0.10 APS 0.896 ± 0.002 0.923 ± 0.001 0.915 ± 0.006 0.896 ± 0.002 0.923 ± 0.001 0.915 ± 0.006
0.10 APS+TTA-Avg 0.903 ± 0.002 0.930 ± 0.001 0.920 ± 0.007 0.905 ± 0.002 0.933 ± 0.001 0.922 ± 0.005
0.10 APS+TTA-Learned 0.904 ± 0.002 0.930 ± 0.001 0.918 ± 0.006 0.906 ± 0.002 0.932 ± 0.001 0.922 ± 0.004

Table 7: Coverage values associated with experiments in Table 6. TTA-Learned produces significant improvements in
coverage — larger in magnitude than in conjunction with RAPS — across when using the expanded augmentation policy.
TTA-Learned produces no drops in coverage when using the simple augmentation policy, a nd produces improvements at
α = .01 and α = .05.

easier to predict benefit most from TTA. The significance of the relationship between original prediction set size and TTA
improvement disappears when conducted on an example level in this setting. This could be a result of class imbalance in the
dataset; it is possible that the class-average prediction set size obscures important variation in CUB-Birds.

A.9. Impact of augmentation policy size

We also analyze the impact of augmentation policy size on average prediction set size for CUB-Birds (Figure ??), to
understand if additional augmentations may produce larger reductions in set size than we observe. Larger augmentation
policies appear to provide an improvement to average prediction set size at α = .05, but offer little improvement for α = .01.

A.10. Impact of TTA data split

Learning the test-time augmentation policy requires a set of labeled data distinct from those used to select the conformal
threshold. This introduces a trade-off: more labeled data for test-time augmentation may result in more accurate weights, but
a less accurate conformal threshold, and vice versa. We study this tradeoff empirically in the context of ImageNet and the
expanded augmentation policy and show results in Figure 8. We find that, as more data is taken away from the conformal
calibration set, variance in performance grows. This is in line with our intuition; we have fewer examples to approximate the
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Test-time augmentation improves efficiency in conformal prediction

Figure 4: Class-specific performance for ImageNet, for a coverage of 95% α = .05. Using the expanded augmentation
policy RAPS+TTA-Learned produces a noticeable shift in class-average prediction set sizes to the left. There is a significant
correlation between original prediction set size and improvements from TTA (middle) and between class difficulty and
improvements from TTA (right).

Figure 5: Class-specific performance for iNaturalist, for α = .01 (top) and α = .05 (bottom). We see a consistent
relationship between TTA improvements and original class-average prediction set size (middle) and class difficulty (right).
Estimates of class-specific accuracy on iNaturalist are quite noisy because there are 10 images per class (which produces
distinct accuracy bands).
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Test-time augmentation improves efficiency in conformal prediction

Figure 6: Class-specific performance for CUB-Birds, for α = .01 (top) and α = .05% (bottom). These graphs show
an example for which TTA-Learned does not produce improvements in average prediction set size (computed across all
examples). Interestingly, behavior on a class-specific level is different between α = .01 and α = .05. For α = .01, results
are consistent with other datasets: classes which originally receive large prediction set sizes and classes which are more
difficult benefit most from the addition of TTA. For α = .05, the exact opposite is true. While a majority of classes are hurt
by TTA, classes that benefit from TTA are easier and receive smaller prediction set sizes.

Figure 7: Impact of augmentation policy size on ImageNet (left) and CUB-Birds (right). We see that larger policy sizes
translate to a greater improvement (in terms of the ratio of average prediction set sizes using RAPS+TTA-Learned to average
prediction set sizes using RAPS alone) for α = .05. For α = .01, there is no clear trend.
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Test-time augmentation improves efficiency in conformal prediction

Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 APS 98.493 ± 3.075 88.279 ± 4.121 79.231 ± 4.570 98.493 ± 3.075 88.279 ± 4.121 79.231 ± 4.570

0.01 APS+TTA-Avg 68.714 ± 2.856 64.197 ± 2.336 62.885 ± 3.125 92.027 ± 4.797 77.344 ± 2.214 73.377 ± 3.600
0.01 APS+TTA-Learned 69.009 ± 2.156 64.852 ± 2.823 64.045 ± 3.398 90.613 ± 6.421 78.627 ± 4.101 74.571 ± 3.516
0.05 APS 19.820 ± 0.482 15.830 ± 0.611 14.437 ± 0.591 19.820 ± 0.482 15.830 ± 0.611 14.437 ± 0.591
0.05 APS+TTA-Avg 14.308 ± 0.279 11.085 ± 0.267 10.605 ± 0.373 18.862 ± 0.498 15.039 ± 0.405 14.206 ± 0.499
0.05 APS+TTA-Learned 14.084 ± 0.241 11.118 ± 0.209 10.595 ± 0.368 19.119 ± 0.479 15.011 ± 0.346 14.252 ± 0.486
0.10 APS 8.969 ± 0.158 6.671 ± 0.175 6.134 ± 0.163 8.969 ± 0.158 6.671 ± 0.175 6.134 ± 0.163
0.10 APS+TTA-Avg 7.193 ± 0.101 5.454 ± 0.098 5.111 ± 0.096 8.787 ± 0.136 6.838 ± 0.143 6.309 ± 0.178

0.10 APS+TTA-Learned 7.215 ± 0.106 5.490 ± 0.090 5.131 ± 0.061 8.813 ± 0.180 6.826 ± 0.121 6.311 ± 0.123

Table 8: Results across base classifiers using APS alone, APS + TTA-Avg, and APS + TTA-learned in conjunction with the
expanded augmentation policy (left) and simple augmentation policy (right). TTA-Learned and the expanded augmentation
policy produce the smallest prediction sets (on average).

Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 APS 0.980 ± 0.001 0.979 ± 0.002 0.978 ± 0.002 0.980 ± 0.001 0.979 ± 0.002 0.978 ± 0.002
0.01 APS+TTA-Avg 0.985 ± 0.001 0.985 ± 0.001 0.984 ± 0.001 0.981 ± 0.001 0.980 ± 0.001 0.978 ± 0.002
0.01 APS+TTA-Learned 0.985 ± 0.001 0.985 ± 0.001 0.984 ± 0.001 0.980 ± 0.002 0.980 ± 0.002 0.979 ± 0.002
0.05 APS 0.931 ± 0.002 0.930 ± 0.002 0.929 ± 0.002 0.931 ± 0.002 0.930 ± 0.002 0.929 ± 0.002

0.05 APS+TTA-Avg 0.944 ± 0.002 0.942 ± 0.001 0.942 ± 0.002 0.937 ± 0.002 0.935 ± 0.002 0.934 ± 0.002
0.05 APS+TTA-Learned 0.943 ± 0.002 0.942 ± 0.001 0.942 ± 0.002 0.937 ± 0.002 0.935 ± 0.001 0.934 ± 0.002
0.10 APS 0.896 ± 0.002 0.892 ± 0.002 0.893 ± 0.002 0.896 ± 0.002 0.892 ± 0.002 0.893 ± 0.002

0.10 APS+TTA-Avg 0.903 ± 0.002 0.901 ± 0.001 0.902 ± 0.001 0.905 ± 0.002 0.903 ± 0.001 0.903 ± 0.002
0.10 APS+TTA-Learned 0.904 ± 0.002 0.902 ± 0.001 0.902 ± 0.001 0.906 ± 0.002 0.903 ± 0.002 0.903 ± 0.002

Table 9: Coverage values for APS and TTA variants of APS across base classifiers, using ImageNet. TTA-Learned or
TTA-Avg in combination with the expanded augmentation policy significantly improve coverage in every comparison.

distribution of conformal scores. However, at all percentages, test-time augmentation introduces a significant improvement
in prediction set sizes over using all the labeled examples, and their original probabilities, to determine the threshold. This
suggests that the benefits TTA confers outweigh the costs to the estimation of the conformal threshold, a practically useful
insight to those who wish to apply conformal prediction in practice6

A.11. Impact of calibration set size

We plot the relationship between calibration set size and average prediction set size in Figure 9 across two augmentation
policies, two datasets, and two values of α. We see that TTA is more effective the larger the calibration set, in the context of
ImageNet. In the context of CUB-Birds, it appears that TTA approaches equivalence with the conformal score alone as the
calibration set size increases.

A.12. TTA’s effect on optimal Top-k for a given coverage α

As discussed in text, test-time augmentation improves the performance of conformal predictions by improving the top-k
accuracy of the resulting probabilities, for some k. One way to understand this difference is to compare what value of kopt
is necessary for a given coverage α. Networks with higher top-k accuracy produce lower values of kopt than networks with
low top-k accuracy. We visualize the difference in the optimal k for TTA-Learned probabilities compared to the original
probabilities in Figure 10.
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Test-time augmentation improves efficiency in conformal prediction

Expanded Aug Policy Simple Aug Policy

Alpha Method ImageNet iNaturalist CUB-Birds ImageNet iNaturalist CUB-Birds

0.01 RAPS 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Avg 0.991 ± 0.001 0.990 ± 0.001 0.991 ± 0.002 0.990 ± 0.001 0.990 ± 0.001 0.991 ± 0.002
0.01 RAPS+TTA-Learned 0.990 ± 0.001 0.990 ± 0.001 0.991 ± 0.002 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.002
0.05 RAPS 0.951 ± 0.002 0.954 ± 0.002 0.955 ± 0.007 0.951 ± 0.002 0.954 ± 0.002 0.955 ± 0.007
0.05 RAPS+TTA-Avg 0.951 ± 0.001 0.952 ± 0.002 0.954 ± 0.007 0.951 ± 0.001 0.953 ± 0.003 0.957 ± 0.004
0.05 RAPS+TTA-Learned 0.952 ± 0.001 0.954 ± 0.002 0.957 ± 0.007 0.951 ± 0.002 0.952 ± 0.002 0.956 ± 0.007
0.10 RAPS 0.906 ± 0.004 0.907 ± 0.003 0.919 ± 0.014 0.906 ± 0.004 0.907 ± 0.003 0.919 ± 0.014
0.10 RAPS+TTA-Avg 0.905 ± 0.005 0.908 ± 0.002 0.912 ± 0.014 0.905 ± 0.004 0.908 ± 0.002 0.915 ± 0.010
0.10 RAPS+TTA-Learned 0.905 ± 0.004 0.909 ± 0.003 0.919 ± 0.016 0.907 ± 0.004 0.908 ± 0.003 0.913 ± 0.011

Table 10: Coverage values for RAPS, RAPS+TTA-Avg, and RAPS+TTA-Learned across datasets and coverage values.
RAPS+TTA-Learned never decreases the coverage achieved by RAPS alone, and in some cases, improves it significantly (as
in the case of ImageNet and iNaturalist).

Figure 8: We plot the percentage of data used to train the TTA policy on the x-axis and the average prediction set size on the
y-axis. Error bars describe variance over 10 random splits of the calibration and test set. We can make two observations: 1)
as the data used to train the TTA policy increases and the data used to estimate the conformal threshold decreases, variance
in performance grows and 2) across a wide range of data splits, learned TTA policies (green) introduce improvements to
achieved prediction set sizes compared to the original probabilities (gold). These results also suggest that relatively little
training data is required to learn a useful test-time augmentation policy; in this case, 2-3 images per class, or 10% of the
available labeled data.
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Test-time augmentation improves efficiency in conformal prediction

Figure 9: We plot the relationship between calibration set size and average prediction set size across two values of alpha,
two augmentation policies, and two datasets (ImageNet and CUB-Birds). For ImageNet, larger calibration set sizes correlate
with larger and more consistent improvements from the addition of TTA, where the improvement flattens out for calibration
set sizes larger than 50%, or 12,500 images (12-13 per class). TTA does appear to be able to improve average prediction set
size even with a calibration set size of 1,250 (5% of original ImageNet calibration set size). For CUB-Birds, a dataset on
which TTA does not perform as well, we see that TTA performs comparably to RAPS alone the larger the calibration set.

Figure 10: We plot the distribution of optimal k for each dataset given two coverage values (.01 and .05). Probabilities
transformed by TTA-Learned produce significantly lower values for k (measured using a pairwise t-test) than the orig-
inal probabilities on both ImageNet and iNaturalist, two datasets for which test-time augmentation produces consistent
improvements.
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Test-time augmentation improves efficiency in conformal prediction

Expanded Aug Policy Simple Aug Policy

Alpha Method ResNet-50 ResNet-101 ResNet-152 ResNet-50 ResNet-101 ResNet-152

0.01 RAPS 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Avg 0.991 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.01 RAPS+TTA-Learned 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.990 ± 0.001
0.05 RAPS 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002
0.05 RAPS+TTA-Avg 0.951 ± 0.001 0.951 ± 0.001 0.952 ± 0.002 0.951 ± 0.001 0.952 ± 0.002 0.952 ± 0.002
0.05 RAPS+TTA-Learned 0.952 ± 0.001 0.952 ± 0.002 0.952 ± 0.002 0.951 ± 0.002 0.952 ± 0.002 0.952 ± 0.002
0.10 RAPS 0.906 ± 0.004 0.906 ± 0.004 0.906 ± 0.002 0.906 ± 0.004 0.906 ± 0.004 0.906 ± 0.002

0.10 RAPS+TTA-Avg 0.905 ± 0.005 0.905 ± 0.002 0.908 ± 0.002 0.905 ± 0.004 0.908 ± 0.004 0.910 ± 0.002
0.10 RAPS+TTA-Learned 0.905 ± 0.004 0.907 ± 0.003 0.911 ± 0.002 0.907 ± 0.004 0.908 ± 0.004 0.910 ± 0.002

Table 11: Coverage values for TTA variants of conformal prediction compared to RAPS alone, across different base
classifiers on ImageNet. TTA-Learned preserves coverage across all comparisons and significantly improves upon the
achieved coverage using ResNet-101 with RAPS (granted, the magnitude of this improvement is small).

Figure 11: Comparison of uncertainty sets produced using the simple augmentation policy (orange) compared to the tradeoff
RAPS achieves between prediction set size and coverage (blue).

A.13. TTA Uncertainty Sets

What if we instead generated uncertainty sets by creating a set out of the predictions made on each augmentations in a TTA
policy? Interestingly, this approach can provide marginal improvements compared to the RAPS tradeoff between prediction
set size and coverage—see Figure 11 for a comparison with the simple test-time augmentation policy. The sets are far less
practically useful compared to those produced by a conformal predictor, but these differences may suggest ways to further
improve the efficiency of conformal predictors.
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