
When and Why Test-Time Augmentation Works

Divya Shanmugam
MIT CSAIL

Cambridge, MA 02139
divyas@mit.edu

Davis Blalock
MIT CSAIL

Cambridge, MA 02139
dblalock@pm.me

Guha Balakrishnan
Amazon Research
Seattle, WA 98109
balakg@mit.edu

John Guttag
MIT CSAIL

Cambridge, MA 02139
guttag@csail.mit.edu

Abstract

Test-time augmentation (TTA)—the aggregation of pre-
dictions across transformed versions of a test input—is a
common practice in image classification. In this paper,
we present theoretical and experimental analyses that shed
light on 1) when test time augmentation is likely to be help-
ful and 2) when to use various test-time augmentation poli-
cies. A key finding is that even when TTA produces a net
improvement in accuracy, it can change many correct pre-
dictions into incorrect predictions. We delve into when
and why test-time augmentation changes a prediction from
being correct to incorrect and vice versa. Our analysis
suggests that the nature and amount of training data, the
model architecture, and the augmentation policy all mat-
ter. Building on these insights, we present a learning-based
method for aggregating test-time augmentations. Experi-
ments across a diverse set of models, datasets, and augmen-
tations show that our method delivers consistent improve-
ments over existing approaches.

1. Introduction

Data augmentation—the expansion of a dataset by
adding transformed copies of each example—is a common
practice in machine learning. Typically, data augmentation
is performed when a model is being trained. However, it
can also be used at test-time to obtain greater robustness
[18, 22, 5], improved accuracy [12, 24, 20, 10, 13], or es-
timates of uncertainty [13, 21, 1, 25]. Test-Time Augmen-
tation (TTA) entails pooling predictions from several trans-
formed versions of a given test input to obtain a ”smoothed”
prediction. For example, one could average the predictions

Figure 1: Percentage of predictions corrected (orange)
and corrupted (blue) by TTA. Reported work on TTA typ-
ically examines the net improvement (green). This paper
provides analysis on what factors influence TTA improve-
ments and a method that accounts for these factors.

from various cropped versions of a test image, so that the
final prediction is robust to any single unfavorable crop.

TTA is popular because it is easy to use. It is simple to
put into practice with off-the-shelf libraries [17, 4], makes
no change to the underlying model, and requires no addi-
tional data. However, despite its popularity, there is rel-
atively little research on when and why TTA works. For
example, what constitutes a good TTA policy? What kind
of images benefit from TTA and what kind do not? How
does model architecture affect the magnitude of improve-
ment TTA introduces?

Consider the performance of a TTA policy that includes
flips, crops, and scales in Fig. 1. While the net improve-

1

ar
X

iv
:2

01
1.

11
15

6v
1

 [
cs

.C
V

]
 2

3
N

ov
 2

02
0

ment (green) is positive for each network architecture, a
sizeable number of predictions are also changed to be in-
correct (blue). Moreover, the improvement varies widely
over architectures.

The goal of our work is twofold: (1) to understand which
predictions TTA changes and why and (2) to use these in-
sights to increase the classification accuracy of TTA meth-
ods. To do this, we first provide an empirical analysis of the
factors that contribute to TTA performance and show how
the dataset, model architecture, and augmentation types all
matter. Following this analysis, we present a learning-based
method for TTA that depends upon these factors. This
method learns a function that aggregates the predictions
from each augmentation of a test image.

Our contributions are as follows:

• Insights into TTA that reveal the dependence of TTA
on characteristics of the training set, architecture, and
augmentations involved. We derive these insights from
extensive experiments and include practical takeaways
for the use of TTA.

• A new TTA method that learns to aggregate predictions
from different transformations for a given model and
dataset. Our method significantly outperforms exist-
ing approaches, providing consistent accuracy gains
across numerous architectures, datasets, and augmen-
tation policies. We also show that the combination of
TTA with smaller models can match the performance
of larger models.

2. Related Work
Image augmentation at test-time has been used to mea-

sure model uncertainty [13, 21, 1, 25], to attack models
[23, 15, 7], to defend models [18, 22, 5], and to increase
test accuracy [9, 19, 8, 20, 24, 12]. Because our focus is
on test-time augmentation for the purpose of increasing im-
age classification accuracy, we limit our discussion to work
considering this problem.

Most works describing a test-time augmentation method
for increasing classification accuracy present it as a sup-
plemental detail, with a different methodological contribu-
tion being the focus of the paper. In the presentation of
Alexnet, Krizhevsky et al. [12] make predictions by “ex-
tracting five 224 × 224 patches...as well as their horizontal
reflections...and averaging the predictions made by the net-
work’s softmax layer on the ten patches.” He et al. [8]
describe a similar setup and include an additional variation
involving many more augmentations. The latter variation
incorporates rescaling of the input in addition to cropping
and flipping. The cropping, scaling, and flipping combina-
tion is also employed by Simonyan et al. [20] and Szegedy
et al. [24], though with differing details in each case. While
most of these papers report results with and without test-

time augmentation, none offers a systematic investigation
into the merits of each augmentation function or how their
benefits might generalize to other networks or datasets.

The works most closely related to our own are those
of Sato et al. [19], Howard et al. [9], Molchanov et al.
[14], and Kim et al. [11]. The first seeks to improve
classification accuracy by employing test-time augmenta-
tion. Their method samples augmentation functions ran-
domly for each input, and makes predictions by averaging
the log class probabilities derived from each transformed
image. In contrast, we optimize both the set of augmenta-
tions used and the function that aggregates the predictions
from each. Howard et al. [9] consider the problem of select-
ing a set of useful augmentations and proposes a method of
choosing augmentations described as a “greedy algorithm”
that “starts with the best prediction and at each step adds an-
other prediction until there is no additional improvement.”
The method is evaluated on a single network and dataset,
and does not learn to aggregate predictions as we do. Most
recently, Molchanov et al. [14] propose Greedy Policy
Search, which constructs a test-time augmentation policy
by greedily selecting augmentations to include in a fixed-
length policy. The predictions generated from the policy
are aggregated using a simple average. Similarly, Kim et al.
[11] present a method to learn an instance-aware test-time
augmentation policy. The method selects test-time augmen-
tations with the lowest predicted loss for a given image,
where the predicted loss is learned from the training data.

Our work differs in that we focus on the factors that
influence test-time augmentation and, given those factors,
how we can learn to aggregate augmentation predictions.
The solution we propose—learning the optimal weights
per augmentation—can be applied in conjunction with the
aforementioned methods.

3. Understanding TTA Empirically

What affects the performance of TTA in practice? We
approach this question empirically, examining the depen-
dence of TTA on the data, architectures, and type of aug-
mentations.

3.1. Setup

Datasets We use two datasets: ImageNet (1000 classes)
and Flowers-102 (102 classes). Our preprocessing pipeline
is identical for each dataset: the shortest dimension of each
image is resized to 256 pixels, followed by a center crop to
produce a 256x256 pixel image. We chose these datasets for
their differences in difficulty and domain—the architectures
we considered can achieve >90% accuracy on Flowers102
and 70-80% on ImageNet. Our choice of datasets is also
motivated by the fact that they share the same preprocessing
pipeline, allowing us to isolate the benefit of TTA.

2

Models We evaluate the performance of four architec-
tures: ResNet-18, ResNet-50, MobileNetV2, and Incep-
tionV3. We include MobileNetV2 to examine the perfor-
mance of TTA for space-constrained applications, where re-
peated inference might be preferable to deploying a larger
network. We downloaded pretrained models from the Py-
Torch model zoo, where each model is trained on normal-
ized image crops of size 224x224 and with the same aug-
mentation policy, which includes horizontal flips and ran-
dom crops [3]. To produce pretrained models for Flow-
ers102, we use the finetuning procedure presented by [16].
This procedure starts with a pretrained ImageNet network
and freezes the weights in all but the last layer. The net-
work is then trained on the new dataset for 100 epochs, us-
ing a batch size of 32, SGD optimizer (learning rate=.01,
momentum=.9), and a dropout probability of .2.

Augmentation Policies We consider two augmentation
policies. Standard reflects the typical augmentations used
for TTA (flips, crops, and scales) and Expanded includes
a more comprehensive set of augmentations, such as inten-
sity transforms. Readers interested in the specific augmen-
tations may refer to the appendix. Each policy replaces the
model’s original predictions with an average of predictions
on transformed images.

The Standard test-time augmentation policy produces 30
transformed versions per test image (a cross product of 2
flips, 5 crops, and 3 scales). The 5 crops correspond to the
center crop and a crop from each corner. The three scale
parameters are 1 (original image), 1.04 (4% zoomed in) and
1.10 (10% zoomed in), based on work that shows multi-
scale evaluation improves model performance [20].

The Expanded test-time augmentation policy produces
128 transformations for each test image, consisting of 8
binary transforms from the PIL library [17] and 12 con-
tinuous transforms. We include 10 evenly-spaced magni-
tudes of each continuous transformation. We base this set
of augmentations on AutoAugment [6] with two major dis-
tinctions: 1) We make each augmentation function deter-
ministic, to allow us to understand the specific relationship
between an augmentation and model predictions, and 2) we
do not consider combinations of these base transformations,
because enumerating trillions of perturbations would be in-
feasible.

Metrics We use two performance metrics: 1) the percent-
age of predictions corrected, where a correction describes
an instance where TTA changes an incorrect prediction to
a correct one, 2) the percentage of predictions corrupted,
where TTA changes a correct prediction to an incorrect
one.

Figure 2: Percentage of predictions corrected (orange)
and corrupted (blue) by two TTA policies (Standard,
Expanded). Results for two datasets (ImageNet, Flowers-
102) and four popular neural network models. Models are
ordered by accuracy on classification task.

Figure 3: Architectures that benefit least from standard
TTA are also the least sensitive to the augmentations..
We list the architectures in decreasing order of benefit from
TTA. Each dot corresponds to a single augmentation in the
standard augmentation policy (e.g. a horizontal flip, scale
of 4%, and a center crop). Dots of same color represent the
same augmentation.

3.2. Overall results

Figure 2 plots the percentages of corruptions and correc-
tions introduced by the standard and expanded TTA poli-
cies. The net effect of TTA is nearly always positive. How-
ever, the number of incorrect predictions introduced by the
method represents a significant percentage of the changes
introduced. In the context of ImageNet and ResNet-18, a
little over one third of the labels changed by the standard
TTA policy are incorrect.

The magnitude of changes TTA introduces for Flowers-
102 is much lower than for ImageNet. This is to be ex-
pected since Flowers-102 exhibits a more consistent type of
scene. Futhermore, the flowers are typically centered and
taken from the same perspective while ImageNet objects are

3

Figure 4: Increase in amount of training data is cor-
related with lower TTA improvement. Results for a
ResNet-50 architecture on Flowers-102, where we plot the
percentage increase in quantity of training data relative to
the original training set on the x-axis. Highlighted area rep-
resents standard deviation over five trials.

not.
Figure 2 demonstrates that while one can expect a con-

sistent improvement in accuracy from TTA, the magnitude
of this improvement varies. We explore the dependence of
this improvement on model accuracy, dataset size, and aug-
mentations in the following sections.

3.3. How does the model matter?

Figure 2 illustrates a downward trend: the more accurate
the model, the lower the TTA gain. We hypothesize that this
is because more accurate models learn the invariances that
TTA typically exploits. We test this hypothesis here.

Setup We measure the agreement of an augmentation as
the fraction of predictions for which the model’s prediction
on the original image and the augmented image match. We
compare the agreements of the augmentations to the result-
ing TTA improvement of a model.

Results We order the models on the x-axis of Figure 3 by
their improvement from TTA, where InceptionV3 benefits
the most and ResNet-50 benefits the least. Models further
right on the x-axis are less sensitive to the augmentations of
the standard TTA policy.

The distribution of augmentation agreements demon-
strates how invariant a given model is to a specific augmen-
tation. For example, Figure 3 shows a single green point has
the highest agreement with the original model across mod-
els and datasets. This green point corresponds to the hor-
izontal flip augmentation, which means that each model is
more invariant to flips compared to the remaining test-time
augmentations.

Another observation from Fig. 3 is that MobileNetV2
has two distinctly separated sets of points for Flowers-102.
Each augmentation in the lower cluster includes a 10% scale
of the image. While this effect is most pronounced for Mo-
bileNetV2, it exists for ResNet-18 and ResNet-50 as well.
This suggests that the fine-tuned version of MobileNetV2
is less scale invariant than ResNet-18 and InceptionV3, de-
spite achieving a higher accuracy.

Therefore, our main takeaway in this analysis is that the
benefit of TTA depends upon the model’s lack of invariance
to the given test-time augmentations.

3.4. How does training dataset size matter?

While model accuracy depends on the architecture cho-
sen, it also depends upon the amount of available training
data. Intuitively, a model trained on more data should be
more invariant to augmentations, provided the additional
data is not redundant. We aim to test the hypothesis that an
increase in a model’s training data will result in decreased
TTA benefit.

Setup We consider Flowers-102 and the Standard TTA
policy. We split the test set in half to produce the pool of
extra training data (3000 images) and a test set (3000 im-
ages). We finetune a model on the original Flowers-102
training set (1020 images) and 10% increments of the ad-
ditional training data, to produce 11 pretrained models. We
then evaluate the benefit of TTA for each of these pretrained
models to understand the relationship between dataset size
and TTA performance.

Figure 4 shows that as the training dataset size increases,
the benefit of TTA decreases. In particular, with a 60-70%
increase in training data, TTA improvement is nearly 0.
This finding is in agreement with our hypothesis and sug-
gests that TTA is best applied with limited training data.

3.5. How does the choice of augmentations matter?

The augmentations included in a TTA policy influence
which predictions are corrected and which are corrupted.
We show this through a qualitative analysis of corrected
and corrupted predictions on ImageNet and Flowers-102. In
particular, the use of crops has dataset-specific effects that
produce different types of errors.

3.5.1 ImageNet: Changes due to Label Space

The corruptions and corrections introduced by TTA on Ima-
geNet can be classified into three cases: hierarchical labels,
multiple classes, and similar labels (Figure 5).

Hierarchical labels include examples like (“plate”, “gua-
camole”) and (“table lamp”, “lamp shade”). TTA often bi-
ases a prediction in favor of the smaller or uncentered com-
ponent due to the crops included in the policy. Whether

4

TTA produces a corruption or a correction depends on the
assigned label. For example, Figure 5 depicts an image
where when the true label is “palace” and TTA predicts
“dome.”

Other changed predictions correspond to images
that contain objects from multiple classes such as
(“hook”,“cleaver”) and (“piano”, “trombone”) (Figure 5).
Recent work has noted this trait in ImageNet labels [2].
TTA produces incorrect labels by focusing on a different
part of the image. Again, TTA predictions favor smaller
objects due to crops.

The last subset of major changes corresponds to con-
fusing images, a product of similar labels in the dataset
(e.g., dog breeds). This subset is largely comprised of an-
imals that are easily mistaken for one another. The in-
clusion of crops and scales often serve to increase confu-
sion between classes when the resulting image emphasizes
a non-distinguishing feature. For example, consider the
“Leatherback Turtle” image in Figure 5. One way in which
Leatherback Turtles differ from errapins is scale. As a re-
sult, the inclusion of scales naturally confuses the two. This
type of change suggests that in the absence of labeled data,
TTA could produce a useful measure of similarity between
images. These similarity estimates can be used to guide
contrastive learning and build embedding spaces invariant
to specific augmentations [26].

Those designing TTA policies should ensure that the
augmentations used have minimal correlation with the label
space to avoid errors on images containing hierarchical or
multiple labels. When designing TTA policies in the pres-
ence of similar labels, consider limiting the magnitude of
augmentations included and choose augmentations that fur-
ther distinguish confusing classes. For example, a zoomed-
in version of an “Egyptian Cat” is only easier to mistake for
a “Tabby” due to focus on fur (Figure 5. TTAs that bene-
fit well-separated classes are likely different from those that
benefit often confused classes.

3.5.2 Flowers-102: Changes due to Input Variation

Flowers-102 differs from ImageNet in many respects, such
as dataset size, task difficulty, and class imbalance. Most
importantly, it does not exhibit hierarchical labels or multi-
ple labels. Here, we show that crops have a similarly intu-
itive effect on images from Flowers-102. In particular, we
show that crops can hurt flowers with smaller distinguishing
features (see Figure 6).

Consider images from the class most corrected by
TTA (“Rose”) and images from the class most corrupted
(“Bougainvillea”) in Figure 6. The original predictions of-
ten mistake a rose for another flower with a similar color
(“Globe Flower”, “Cyclamen”) or shape (“Sword Lily”,
“Canna Lily”). TTA may correct to roses because crops

Figure 5: TTA changes can be grouped into three types:
hierarchical labels, multiple labels, and similar labels.
We include three examples from each type. TTA favors
smaller and uncentered labels.

maintain the petal texture, which differentiates roses from
other classes. By including crops and zoomed-in portions

5

Figure 6: Roses (top row) are most helped by TTA
in Flowers-102, while Bougainvilleas (bottom row) are
most harmed. We show four cases of rose predictions be-
ing improved by TTA, and four cases where bougainvillea
predictions are harmed. The white stamen of Bougainvil-
leas is both a distinguishing characteristic and prone to ex-
clusion from certain crops, resulting in corruptions.

of the image in the models’ prediction, the model is better
able to identify these textural differences.

The incorrect predictions introduced by TTA for
“Bougainvillea” are likely due to crops missing the cue
of the white stamen, a distinguishing characteristic for the
class. Moreover, crops may focus on a portion of the back-
ground (as with “Mallow”) and classify the image incor-
rectly. These instances shed light on the distinguishing fea-
tures a model focuses on and how the inclusion of crops
favors classes whose features exist in all crops.

In Figure 7, we compare images from two classes on
which ResNet-50 performs equally well, “Primula” and
“Sword Lily.” Interestingly, TTA improves performance on
only one, “Primula” and not the other. “Primula” exhibits
more consistency in terms of texture, scale, and color, than
images of the “Sword Lily,” which is likely the reason that
TTA helps the former and not the latter. This result suggests
that the disparate effects of TTA could be due to differences
in input variation between classes. In particular, this could
be because horizontal flips and random crops are not suf-
ficient to account for the natural variation in “Sword Lily”
images.

4. Method
In the previous sections, we established relationships be-

tween TTA improvement and the architectures, dataset, and
augmentation types. Our goal is to construct a simple learn-
able model that can more intelligently aggregate TTAs for a
classifier by accounting for these factors. We assume three
inputs to our method:

1. A pretrained black-box classifier f : X → RC that

Figure 7: Equally difficult classes produce different TTA
behavior. The training data for a class that TTA benefits
(“Primula”, top) look qualitatively different from a class
TTA does not benefit (“Sword Lily”, bottom).

maps images to vectors of class probabilities. We use
X to denote the space of images on which the classifier
can operate and C to denote the number of classes. We
assume that f is not fully invariant with respect to the
augmentations.

2. A set of M augmentation functions, A = {am}Mm=1.
Each function am : X → X is a deterministic trans-
form designed to preserve class-relevant information
while modifying variables presumed to be class inde-
pendent such as image scale or color balance.

3. A validation set of N images X = {xi}Ni=1 and associ-
ated labels {yi}Ni=1, yi ∈ {1, . . . , C}. Images need not
relate to the source domain of the model. We assume
this set is representative of the test domain.

Given these inputs, our task is to learn an aggregation
function g : RC×M → RC . Function g takes in the vec-
tors of predictions for all M augmented versions of a given
image and uses them to produce one prediction.

Though g can be arbitrarily complex, such as a multi-
layer neural network, we aim to avoid adding significant
size or latency. Therefore, we only consider functions of
the form:

g(A(xi)) ,
M∑

m=1

(Θ�A(xi))m,∗ (1)

where� denotes an element-wise product, A(xi) ∈ RM×C

is the matrix of M augmentation predictions for input xi,

6

and Θ ∈ RM×C is a matrix of trainable parameters. In
words, g learns a weight for each augmentation-class pair,
and sums the weighted predictions over the augmentations
to produce a final prediction. In scenarios where limited
labeled training data is available, one may opt for Θ ∈ RM ,
where Θ has one weight for each augmentation:

g(A(xi)) , ΘTA(xi). (2)

We refer to (1) as Class-Weighted TTA, or ClassTTA
and (2) as Augmentation-Weighted TTA, or AugTTA. We in-
tend for Θ to represent an augmentation’s importance to a
final prediction and thus impose a constraint that its ele-
ments must be nonnegative. We learn Θ by minimizing the
cross-entropy loss between the true labels yi and the output
of g(A(xi)) using gradient descent. We choose between
ClassTTA and AugTTA using a small held-out validation set
and evaluate the performance of this method, in addition to
the individual parameterizations.

5. Experimental Evaluation

We evaluate the performance of our method across the
datasets and architectures laid out in Section 3.1.

We implemented our method in PyTorch [17] and em-
ploy an SGD optimizer with a learning rate of .01, momen-
tum of .9, and weight decay of 1e-4. We apply projected
gradient descent by clipping the weights to zero after each
update to ensure the learned parameters are non-negative. In
the following experiments, we train ClassTTA and AugTTA
for 30 epochs, choose which to employ using a held-out
validation set, and report our results on a held-out test set.

Dataset Splits We divide the released test sets for Im-
ageNet and Flowers-102 into training (40%), validation
(10%) and test (50%) sets. We make training and valida-
tion sets available to methods that make use of labeled data.
We make both the training and validation set available for
methods that operate greedily, so that each method makes
use of the same amount of data.

Baselines We compare our method to three baselines:

• Raw: The original model’s predictions, with no TTA.

• Mean: Average logits across augmentations. [12].

• GPS: Greedy Policy Search [14]. GPS uses a param-
eter N, for the number of augmentations greedily in-
cluded in a policy. We set this parameter to 3, in line
with experiments reported in the original paper. GPS
makes use of all labeled data (both the training and
validation set).

Statistical Significance We use a pairwise t-test to mea-
sure the statistical significance of our results and produce
error bars via 5 random subsamples of the test set.

5.1. Standard TTA Policy

As shown in Figure 8a, our method significantly outper-
forms all baselines (p-value=7e-6). Moreover, our method
significantly outperforms the original model in all 8 com-
parisons (p-value=4e-8). Our method outperforms other
baselines in 33 of the 40 trials summarized by Figure 8.

Our method consistently employs ClassTTA on Flowers-
102 and AugTTA on ImageNet. This is likely due to the
large number of classes in ImageNet (1000) and the rela-
tively few examples per class (25) to learn from.

Given enough data, ClassTTA should provide a strict im-
provement over AugTTA. Therefore, these results imply that
ClassTTA is best applied to datasets with few classes and
sufficient labeled data. We include results for each param-
eterization in the supplement. In some cases, our method
does worse than either individual parameterization – this is
because it makes use of a small hold-out validation set to
decide between the two. This suggests that in some cases, it
is more useful to forego selecting the parameterization and
instead learn a more performant set of weights.

Our experiments also suggest that the combination of
TTA with smaller networks can outperform larger networks
without TTA and may be of use when deploying machine
learning in space-constrained settings. This can be seen
in the higher performance of ClassTTA applied to Mo-
bileNetV2 (∼3.4 million parameters) compared to the origi-
nal ResNet-50 model (∼23 million parameters) on Flowers-
102.

5.2. Expanded TTA Policy

Figure 8b presents our results. Our method significantly
outperforms competing baselines (p-value=8e-5). Once
more, our method favors ClassTTA for Flowers-102 and
AugTTA for ImageNet. Results in the supplement show
that ClassTTA yields larger improvement for Flowers-102
and moderate improvements on ImageNet. ClassTTA sig-
nificantly outperforms the original model on all datasets (p-
value=1e-6).

Interestingly, many of the TTAs considered in this pol-
icy were not included in any model’s train-time augmenta-
tion policy. As stated earlier, each model was trained with
only two train-time augmentations: flips and crops. This
suggests that useful test-time augmentations need not be in-
cluded during training and may reflect dataset-specific in-
variances.

The tradeoff in using an expanded set of TTAs is the in-
creased cost at inference time. Each additional augmenta-
tion increases the batch size that must be passed through the
network. This cost may not be justified according to Figure

7

(a) Standard Augmentation Policy

(b) Expanded Augmentation Policy

Figure 8: Given a standard set of test-time augmentations,
our method (green) outperforms competing methods (top).
When this set of augmentations is expanded to include 128
distinct transformations, our method continues to outper-
form competing baselines (bottom). Across every experi-
ment, our method outperforms the original model (dotted
black line). A paired t-test shows that our method outper-
forms competing baselines significantly (p-value=1e-11).

8: the accuracy of ClassTTA using a standard set of TTAs
is comparable to accuracy of ClassTTA using an expanded
set of TTAs. This may be because the standard set of TTAs
overlaps with the augmentations used during training. Fur-
ther investigation is necessary to determine the relationship
between train-time and test-time augmentation policies.

5.3. Analysis of Learned Weights

The performance of AugTTA and ClassTTA demonstrate
that there are cases where the simple average over aug-
mentation predictions is not optimal. Here, we find that
the weights they learn for each augmentation make intu-
itive sense and confirm our qualitative observations in ear-
lier sections.

Across all architectures on Flowers-102, our method
learns to exclude the augmentations that include a 10%
scale from the final image (Figure 9). This reflects our ear-
lier observation that augmentations including a 10% scale
exhibited the lowest augmentation agreement in Figure 3.
Thus, it makes sense that predictions are improved by ig-

Figure 9: Augmentations with higher scale parameters
are weighted lower by our method. Learned augmenta-
tion weights for each of the 30 augmentations included in
the standard policy. Higher scales are weighted lower for
both datasets.

noring test-time augmentations with particularly low agree-
ment.

Supporting plots for additional architectures and aug-
mentation comparisons and the expanded test-time augmen-
tation policy are included in the supplement. In each case,
augmentations with higher scale parameters (corresponding
to more zoomed-in images) are weighted lower.

6. Discussion
In this paper, we investigate when test-time augmenta-

tion (TTA) works, and when it does not. Through an anal-
ysis of two widely-used datasets—ImageNet and Flowers-
102—we show that the performance of TTA depends upon
the nature of the training data, models, and augmentation
policies employed. We build on these insights to construct
a simple method that accounts for these factors and show
that it outperforms existing TTA approaches.

The insights shared in this study can improve the field’s
understanding of how TTA changes model decisions. This
work opens promising areas for future work:

• TTA for contrastive learning: Contrastive learning can
be described as “learning by comparing,” and TTA
can inform how these comparisons can and should be
made. For example, crops of an image that contain
different classes should not be categorized as similar.
TTA could offer an interesting way to define the com-
parisons a network learns from.

• Targeted train-time augmentation policies: TTA ex-
ploits a model’s lack of invariance to certain trans-
forms. Ideally, the model would instead learn this in-
variance. The success of TTA signals the need for
greater train-time augmentation and can inform a set
of class-specific transforms to include during training.

8

• Learned augmentations: Learning the weights for each
augmentation is a naive way to build on the insights
presented here. One could instead learn a set of aug-
mentations. Past work on TTA considers common aug-
mentations but it would be interesting to consider a
broader class of augmentations.

References
[1] Murat Seckin Ayhan and Philipp Berens. Test-time data aug-

mentation for estimation of heteroscedastic aleatoric uncer-
tainty in deep neural networks. 2018. 1, 2

[2] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xi-
aohua Zhai, and Aäron van den Oord. Are we done with
imagenet? arXiv preprint arXiv:2006.07159, 2020. 5

[3] Remi Cadene. Pretrained models for pytorch. https:
//github.com/Cadene/pretrained-models.
pytorch, 4 2017. Accessed: 2019-07-22. 3

[4] Francois Chollet et al. Keras. https://keras.io, 2015.
1

[5] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certi-
fied adversarial robustness via randomized smoothing. arXiv
preprint arXiv:1902.02918, 2019. 1, 2

[6] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 113–123,
2019. 3

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[9] Andrew G Howard. Some improvements on deep convo-
lutional neural network based image classification. arXiv
preprint arXiv:1312.5402, 2013. 2

[10] Hongsheng Jin, Zongyao Li, Ruofeng Tong, and Lanfen
Lin. A deep 3d residual cnn for false-positive reduction in
pulmonary nodule detection. Medical physics, 45(5):2097–
2107, 2018. 1

[11] Ildoo Kim, Younghoon Kim, and Sungwoong Kim. Learning
loss for test-time augmentation. Advances in Neural Infor-
mation Processing Systems, 33, 2020. 2

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1, 2, 7

[13] Kazuhisa Matsunaga, Akira Hamada, Akane Minagawa, and
Hiroshi Koga. Image classification of melanoma, nevus and
seborrheic keratosis by deep neural network ensemble. arXiv
preprint arXiv:1703.03108, 2017. 1, 2

[14] Dmitry Molchanov, Alexander Lyzhov, Yuliya Molchanova,
Arsenii Ashukha, and Dmitry Vetrov. Greedy policy search:
A simple baseline for learnable test-time augmentation.
arXiv preprint arXiv:2002.09103, 2020. 2, 7

[15] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: a simple and accurate method to
fool deep neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2574–2582, 2016. 2

[16] Alex Parinov. cnn-finetune. https://pypi.org/
project/cnn-finetune/, 7 2019. 3

[17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 1, 3, 7

[18] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella
DiLillo, and James Storer. Deflecting adversarial attacks
with pixel deflection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 8571–
8580, 2018. 1, 2

[19] Ikuro Sato, Hiroki Nishimura, and Kensuke Yokoi. Apac:
Augmented pattern classification with neural networks.
arXiv preprint arXiv:1505.03229, 2015. 2

[20] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1, 2, 3

[21] Lewis Smith and Yarin Gal. Understanding measures of un-
certainty for adversarial example detection. arXiv preprint
arXiv:1803.08533, 2018. 1, 2

[22] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Er-
mon, and Nate Kushman. Pixeldefend: Leveraging genera-
tive models to understand and defend against adversarial ex-
amples. arXiv preprint arXiv:1710.10766, 2017. 1, 2

[23] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai.
One pixel attack for fooling deep neural networks. IEEE
Transactions on Evolutionary Computation, 2019. 2

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
1, 2

[25] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest,
Sébastien Ourselin, and Tom Vercauteren. Aleatoric un-
certainty estimation with test-time augmentation for medi-
cal image segmentation with convolutional neural networks.
Neurocomputing, 338:34–45, 2019. 1, 2

[26] Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Dar-
rell. What should not be contrastive in contrastive learning.
arXiv preprint arXiv:2008.05659, 2020. 5

9

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://keras.io
https://pypi.org/project/cnn-finetune/
https://pypi.org/project/cnn-finetune/

